1,618 research outputs found
The competitor release effect applied to carnivore species: how red foxes can increase in numbers when persecuted
The objective of our study was to numerically simulate the population dynamics of a hypothetical community of three species of small to medium–sized carnivores subjected to non–selective control within the context of the competitor release effect (CRE). We applied the CRE to three carnivore species, linking interspecific competition with predator control efforts. We predicted the population response of European badger, the red fox and the pine marten to this wildlife management tool by means of numerical simulations. The theoretical responses differed depending on the intrinsic rate of growth (r), although modulated by the competition coefficients. The red fox, showing the highest r value, can increase its populations despite predator control efforts if control intensity is moderate. Populations of the other two species, however, decreased with control efforts, even reaching extinction. Three additional theoretical predictions were obtained. The conclusions from the simulations were: 1) predator control can play a role in altering the carnivore communities; 2) red fox numbers can increase due to control; and 3) predator control programs should evaluate the potential of unintended effects on ecosystems
A new species of Polydiscia (Acari, Prostigmata, Tanaupodidae) with reference to its host: a new species of Deuterosminthurus (Collembola, Symphypleona, Bourletiellidae)
During the sampling campaign to describe the Iberian fauna of Collembola, an undescribed species
of the family Bourletiellidae living on Genista hispanica L. was found with parasitic mites. The
attached parasitic mites were identified as the larval instar of a new species of Polydiscia, a prostigmatid
mite of the family Tanaupodidae Thor, 1935. The genus was previously cited in Austria. The
Collembola, Deuterosminthurus bisetosus sp. nov, which was found in distant localities on the Iberian
Peninsula, and Polydiscia deuterosminthurus sp. nov., are both here described. Both species
were found together on Genista for three consecutive years. The abundant material obtained has
allowed us to study both species with SEM (Scanning Electron Microscopy), and show characteristics
in greater detail than has been possible with light microscopy
CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats
RATIONALE: Previous work suggests a role for stress-related corticotropin-releasing factor (CRF) systems in cocaine dependence. However, the involvement of activation of CRF(1) receptors in rats self-administering cocaine with extended access is unknown. OBJECTIVE: The current study examined whether CRF(1) receptor antagonist administration alters cocaine self-administration in animals given extended access. MATERIALS AND METHODS: Wistar rats (n = 32) acquired cocaine self-administration (0.66 mg/kg per infusion) in 1 h sessions for up to 11 days. Rats then were assigned to receive either daily short (1 h, ShA) or long (6 h, LgA) access to cocaine self-administration (n = 7-9 per group). Following escalation of intake, animals received one of two selective CRF(1) antagonists: antalarmin (6.3-25 mg/kg, i.p.) or N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5a]pyrimidin-7-amine (MPZP; 3.6-27.5 mg/kg, s.c.). RESULTS: By day 11 of the escalation period, LgA rats increased their cocaine intake, reaching an intake level of 15.1 mg/kg, compared to 11.1 mg/kg in ShA rats, during the first hour of sessions. Antalarmin reduced cocaine self-administration at the highest dose selectively in the LgA group but not the ShA group. MPZP reduced cocaine intake both in LgA and ShA rats. However, MPZP did so at a lower dose in LgA rats than in ShA rats. Within the LgA group, MPZP decreased cocaine intake in the first 10 min (loading phase) as well as in the latter session intake (maintenance phase). CONCLUSION: The data suggest that hypersensitivity of the CRF system occurs with extended access to cocaine self-administration and that this altered CRF system may contribute to the increased motivation to self-administer cocaine that develops during psychostimulant dependence
How do roots respond to osmotic stress? A transcriptomic approach to address this question in a non-model crop
Drought is a complex phenomenon that is relevant for many crops. Performing high-throughput transcriptomics in non-model crops is challenging. The non-model crop where our workflow has been tested on is banana (Musa spp.), which ranks among the top ten staple foods (total production over 145 million tons in 2013 (FAOstat)[1]). Bananas need vast amounts of water and even mild-drought conditions are responsible for considerable yield losses[2]. To characterize drought in the roots of different banana genotypes, we designed a lab model based on osmotic stress (5% PEG treatment for 3 days) and performed mRNA-seq analysis[3]. Using Illumina technology, 18 cDNA libraries were sequenced producing around 568 million high quality reads, of which 70-84% were mapped to the diploid reference genome[4]. We show that the applied stress leads to a drop in energy levels inducing a metabolic shift towards (i) higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. We also analyzed the expression patterns of paralogous genes belonging to the same gene families and detected possible cases of sub-functionalization
Mariposas diurnas de Pamplona
Esta obra se encarga de analizar las características principales de las mariposas
existentes en Pamplona, clasificándolas por familias, tipología y variedad, así
como explicando las cuatro fases que atraviesan durante su ciclo vital: huevo,
oruga, pupa y adulto
Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress
To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70–84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress
Combined phenotypic and transcriptomic approaches to evaluate drought-stress response in banana (Musa spp.), a non-model crop
Diversity of Acari and Collembola along a pollution gradient in soils of a pre-pyrenean forest ecosystem
Mites and springtails are important members of soil mesofauna and have been proven to be good bioindicators of airborne pollutants. We studied the surrounding area of a steel mill located in a mountain valley of North Spain. Previous studies had documented the existence of a pollution gradient in this area due to the emissions of the factory, thus providing an interesting site to investigate the potential effects of pollutants (heavy metals and nitrogen) on soil biodiversity.
The density of Acari and Collembola significantly decreased with the increase in concentration of Cr, Mn, Zn, Cd and Pb. Mites appeared to be more sensitive to heavy metal pollution than springtails. Likewise, the density of these microarthropoda was lower in those soils exhibiting higher nitrogen content.
The species composition of the community of Acari and Collembola changed according to heavy metal pollution. Significant differences in abundance, species richness and diversity were observed between the communities of the sampling sites. Some species were exclusive of the less polluted sites, while other appeared in the most contaminated ones. This different response of soil mesofauna to pollutants suggests that some mite or springtail species could be used as bioindicators of heavy metal pollution
- …
