38 research outputs found
H-ATLAS/GAMA: The nature and characteristics of optically red galaxies detected at submillimetre wavelengths
We combine Herschel/SPIRE sub-millimeter (submm) observations with existing multi-wavelength data to investigate the characteristics of low redshift, optically red galaxies detected in submm bands. We select a sample of galaxies in the redshift range 0.01z0.2, having >5 detections in the SPIRE 250 micron submm waveband. Sources are then divided into two sub-samples of and galaxies, based on their UV-optical colours. Galaxies in the sample account for 4.2 per cent of the total number of sources with stellar masses M10 Solar-mass. Following visual classification of the galaxies, we find that 30 per cent of them are early-type galaxies and 40 per cent are spirals. The colour of the -spiral galaxies could be the result of their highly inclined orientation and/or a strong contribution of the old stellar population. It is found that irrespective of their morphological types, and sources occupy environments with more or less similar densities (i.e., the parameter). From the analysis of the spectral energy distributions (SEDs) of galaxies in our samples based on MAGPHYS, we find that galaxies in the sample (of any morphological type) have dust masses similar to those in the sample (i.e. normal spiral/star-forming systems). However, in comparison to the -spirals and in particular systems, -ellipticals have lower mean dust-to-stellar mass ratios. Besides galaxies in the -elliptical sample have much lower mean star-formation/specific-star-formation rates in contrast to their counterparts in the sample. Our results support a scenario where dust in early-type systems is likely to be of an external origin
Planck 2018 results. IX. Constraints on primordial non-Gaussianity
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following results: f_NL^local = -0.9 +\- 5.1; f_NL^equil = -26 +\- 47; and f_NL^ortho = - 38 +\- 24 (68%CL, statistical). These results include the low-multipole (4 <= l < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests, and are stable with respect to our 2015 measurements. Polarization bispectra display a significant improvement in robustness; they can now be used independently to set NG constraints. We consider a large number of additional cases, e.g. scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 sigma. We present model-independent reconstructions and analyses of the CMB bispectrum. Our final constraint on the local trispectrum shape is g_NLl^local = (-5.8 +\-6.5) x 10^4 (68%CL, statistical), while constraints for other trispectra are also determined. We constrain the parameter space of different early-Universe scenarios, including general single-field models of inflation, multi-field and axion field parity-breaking models. Our results provide a high-precision test for structure-formation scenarios, in complete agreement with the basic picture of the LambdaCDM cosmology regarding the statistics of the initial conditions (abridged)
Planck 2018 results. VII. Isotropy and statistics of the CMB
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, and , or the -mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., ). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales
Planck 2018 results. VII. Isotropy and Statistics of the CMB
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, and , or the -mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., ). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales
Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps
Recommended from our members
Exploring cosmic origins with CORE: Gravitational lensing of the CMB
Planck 2018 results. VII. Isotropy and statistics of the CMB
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, and , or the -mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., ). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales
