471 research outputs found
New Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints
We present new interstellar dust models which have been derived by
simultaneously fitting the far-ultraviolet to near-infrared extinction, the
diffuse infrared (IR) emission and, unlike previous models, the elemental
abundance constraints on the dust for different interstellar medium abundances,
including solar, F and G star, and B star abundances. The fitting problem is a
typical ill-posed inversion problem, in which the grain size distribution is
the unknown, which we solve by using the method of regularization. The dust
model contains various components: PAHs, bare silicate, graphite, and amorphous
carbon particles, as well as composite particles containing silicate, organic
refractory material, water ice, and voids. The optical properties of these
components were calculated using physical optical constants. As a special case,
we reproduce the Li & Draine (2001) results, however their model requires an
excessive amount of silicon, magnesium, and iron to be locked up in dust: about
50 ppm (atoms per million of H atoms), significantly more than the upper limit
imposed by solar abundances of these elements, about 34, 35, and 28 ppm,
respectively. A major conclusion of this paper is that there is no unique
interstellar dust model that simultaneously fits the observed extinction,
diffuse IR emission, and abundances constraints.Comment: 70 pages, 23 figures, accepted for publication in the Astrophysical
Journal Supplemen
An Analysis of the Shapes of Interstellar Extinction Curves. VI. The Near-IR Extinction Law
We combine new HST/ACS observations and existing data to investigate the
wavelength dependence of NIR extinction. Previous studies suggest a power-law
form, with a "universal" value of the exponent, although some recent
observations indicate that significant sight line-to-sight line variability may
exist. We show that a power-law model provides an excellent fit to most NIR
extinction curves, but that the value of the power, beta, varies significantly
from sight line-to-sight line. Therefore, it seems that a "universal NIR
extinction law" is not possible. Instead, we find that as beta decreases, R(V)
[=A(V)/E(B-V)] tends to increase, suggesting that NIR extinction curves which
have been considered "peculiar" may, in fact, be typical for different R(V)
values. We show that the power law parameters can depend on the wavelength
interval used to derive them, with the beta increasing as longer wavelengths
are included. This result implies that extrapolating power law fits to
determine R(V) is unreliable. To avoid this problem, we adopt a different
functional form for NIR extinction. This new form mimics a power law whose
exponent increases with wavelength, has only 2 free parameters, can fit all of
our curves over a longer wavelength baseline and to higher precision, and
produces R(V) values which are consistent with independent estimates and
commonly used methods for estimating R(V). Furthermore, unlike the power law
model, it gives R(V)'s that are independent of the wavelength interval used to
derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/E(B-V) -
0.79 can estimate R(V) to +/-0.12. Finally, we use model extinction curves to
show that our extinction curves are in accord with theoretical expectations.Comment: To appear in the Astrophysical Journa
Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-Frequency SiO Masers
We present Submillimeter Array observations of high frequency SiO masers
around the supergiant VX Sgr and the semi-regular variable star W Hya. The
J=5-4, v=1 28SiO and v=0 29SiO masers of VX Sgr are shown to be highly linearly
polarized with a polarization from ~5-60%. Assuming the continuum emission
peaks at the stellar position, the masers are found within ~60 mas of the star,
corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization
vectors are consistent with a large scale magnetic field, with position and
inclination angles similar to that of the dipole magnetic field inferred in the
H2O and OH maser regions at much larger distances from the star. We thus show
for the first time that the magnetic field structure in a circumstellar
envelope can remain stable from a few stellar radii out to ~1400 AU. This
provides further evidence supporting the existence of large scale and
dynamically important magnetic fields around evolved stars. Due to a lack of
parallactic angle coverage, the linear polarization of masers around W Hya
could not be determined. For both stars we observed the 28SiO and 29SiO
isotopologues and find that they have a markedly different distribution and
that they appear to avoid each other. Additionally, emission from the SO
5_5-4_4 line was imaged for both sources. Around W Hya we find a clear offset
between the red- and blue-shifted SO emission. This indicates that W Hya is
likely host to a slow bipolar outflow or a rotating disk-like structure.Comment: 8 pages, 7 figures, accepted for publication in ApJ. Online table
will be available with published versio
Late-time Light Curves of Type II Supernovae: Physical Properties of SNe and Their Environment
We present BVRIJHK band photometry of 6 core-collapse supernovae, SNe 1999bw,
2002hh, 2003gd, 2004et, 2005cs, and 2006bc measured at late epochs (>2 yrs)
based on Hubble Space Telescope (HST), Gemini north, and WIYN telescopes. We
also show the JHK lightcurves of a supernova impostor SN 2008S up to day 575.
Of our 43 HST observations in total, 36 observations are successful in
detecting the light from the SNe alone and measuring magnitudes of all the
targets. HST observations show a resolved scattered light echo around SN 2003gd
at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations
detected SNe 2002hh and 2004et, as well. Combining our data with previously
published data, we show VRIJHK-band lightcurves and estimate decline magnitude
rates at each band in 4 different phases. Our prior work on these lightcurves
and other data indicate that dust is forming in our targets from day ~300-400,
supporting SN dust formation theory. In this paper we focus on other physical
properties derived from the late time light curves. We estimate 56Ni masses for
our targets (0.5-14 x 10^{-2} Msun) from the bolometric lightcurve of each for
days ~150-300 using SN 1987A as a standard (7.5 x 10^{-2} Msun). The flattening
or sometimes increasing fluxes in the late time light curves of SNe 2002hh,
2003gd, 2004et and 2006bc indicate the presence of light echos. We estimate the
circumstellar hydrogen density of the material causing the light echo and find
that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm^{-3})
and SNe 2003gd and 2004et have densities more typical of the interstellar
medium (~1 cm^{-3}). The 56Ni mass appears well correlated with progenitor mass
with a slope of 0.31 x 10^{-2}, supporting the previous work by Maeda et al.
(2010), who focus on more massive Type II SNe. The dust mass does not appear to
be correlated with progenitor mass.Comment: We corrected the 56Ni mass of SN2005cs and Figures 8 (a) and 8 (c
The Structure of the {\beta} Leonis Debris Disk
We combine nulling interferometry at 10 {\mu}m using the MMT and Keck
Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {\mu}m
using Spitzer to study the debris disk around {\beta} Leo over a broad range of
spatial scales, corresponding to radii of 0.1 to ~100 AU. We have also measured
the close binary star o Leo with both Keck and MMT interferometers to verify
our procedures with these instruments. The {\beta} Leo debris system has a
complex structure: 1.) relatively little material within 1 AU; 2.) an inner
component with a color temperature of ~600 K, fitted by a dusty ring from about
2 to 3 AU; and 3.) a second component with a color temperature of ~120 K fitted
by a broad dusty emission zone extending from about ~5 AU to ~55 AU. Unlike
many other A-type stars with debris disks, {\beta} Leo lacks a dominant outer
belt near 100 AU.Comment: 14 page body, 3 page appendix, 15 figure
A Peculiar Family of Jupiter Trojans: the Eurybates
The Eurybates family is a compact core inside the Menelaus clan, located in
the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family
exhibits a peculiar abundance of spectrally flat objects, similar to
Chiron-like Centaurs and C-type main belt asteroids. On the basis of the
visible spectra available in literature, Eurybates family's members seemed to
be good candidates for having on their surfaces water/water ice or aqueous
altered materials. To improve our knowledge of the surface composition of this
peculiar family, we carried out an observational campaign at the Telescopio
Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data
show a surprisingly absence of any spectral feature referable to the presence
of water, ices or aqueous altered materials on the surface of the observed
objects. Models of the surface composition are attempted, evidencing that
amorphous carbon seems to dominate the surface composition of the observed
bodies and some amount of silicates (olivine) could be present.Comment: 23 pages, 2 figures, paper accepted for publication in Icaru
Perspectives on Interstellar Dust Inside and Outside of the Heliosphere
Measurements by dust detectors on interplanetary spacecraft appear to
indicate a substantial flux of interstellar particles with masses exceeding
10^{-12}gram. The reported abundance of these massive grains cannot be typical
of interstellar gas: it is incompatible with both interstellar elemental
abundances and the observed extinction properties of the interstellar dust
population. We discuss the likelihood that the Solar System is by chance
located near an unusual concentration of massive grains and conclude that this
is unlikely, unless dynamical processes in the ISM are responsible for such
concentrations. Radiation pressure might conceivably drive large grains into
"magnetic valleys". If the influx direction of interstellar gas and dust is
varying on a ~10 yr timescale, as suggested by some observations, this would
have dramatic implications for the small-scale structure of the interstellar
medium.Comment: 13 pages. To appear in Space Science Review
Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample
Physical dust models are presented for 65 galaxies in SINGS that are strongly detected in the four IRAC bands and three MIPS bands. For each galaxy we estimate (1) the total dust mass, (2) the fraction of the dust mass contributed by PAHs, and (3) the intensity of the starlight heating the dust grains. We find that spiral galaxies have dust properties resembling the dust in the local region of the Milky Way, with similar dust-to-gas ratio and similar PAH abundance. The observed SEDs, including galaxies with SCUBA photometry, can be reproduced by dust models that do not require "cold" (T ≾ 10 K) dust. The dust-to-gas ratio is observed to be dependent on metallicity. In the interstellar media of galaxies with A_O ≡ 12 + log_(10)(O/H) > 8.1, grains contain a substantial fraction of interstellar Mg, Si, and Fe. Galaxies with A_O 8.1 have a median q_(PAH) = 3.55%. The derived dust masses favor a value X_(CO) ≈ 4 × 10^(20) cm^(-2) (K km s^(-1))^(-1) for the CO-to-H_2 conversion factor. Except for some starbursting systems (Mrk 33, Tol 89, NGC 3049), dust in the diffuse ISM dominates the IR power
The effects of dust on the optical and infrared evolution of SN 2004et
We present an analysis of multi-epoch observations of the Type II-P supernova
SN 2004et. New and archival optical spectra of SN 2004et are used to study the
evolution of the Halpha and [O I] 6300A line profiles between days 259 and 646.
Mid-infrared imaging was carried out between 2004 to 2010. We include Spitzer
`warm' mission photometry at 3.6 and 4.5um obtained on days 1779, 1931 and
2151, along with ground-based and HST optical and near-infrared observations
obtained between days 79 and 1803. Multi-wavelength light curves are presented,
as well as optical-infrared spectral energy distributions (SEDs) for multiple
epochs. Starting from about day 300, the optical light curves provide evidence
for an increasing amount of circumstellar extinction attributable to newly
formed dust, with the additional extinction reaching 0.8-1.5 magnitudes in the
V-band by day 690. The overall SEDs were fitted with multiple blackbody
components, in order to investigate the luminosity evolution of the supernova,
and then with Monte Carlo radiative transfer models using smooth or clumpy dust
distributions, in order to estimate how much new dust condensed in the ejecta.
The luminosity evolution was consistent with the decay of 56Co in the ejecta up
until about day 690, after which an additional emission source is required, in
agreement with the findings of Kotak et al. (2009). Clumped dust density
distributions consisting of 20% amorphous carbons and 80% silicates by mass
were able to match the observed optical and infrared SEDs, with dust masses
that increased from 8x10^{-5} Msun on day 300 to 1.5x10^{-3} Msun on day 690,
still significantly lower than the values needed for core collapse supernovae
to make a significant contribution to the dust enrichment of galaxies.Comment: 24 pages, 12 figures, 9 tables, published in MNRA
- …
