5,760 research outputs found
Religious attitudes and home bias: theory and evidence from a pilot study
This paper examines the relationship between religion and home bias. We propose a simple theoretical framework that suggests that countries interacting via their representative individuals might show a certain degree of religion-driven international altruism that in turn affects trade. We test these predictions exploiting data from a survey on religious attitudes and individuals' preferences over consumption of home-produced versus foreign goods that we designed and carried out in 15 different countries. We find evidence that religious openness and home bias are negatively correlated. This appears to provide some support to the hypothesis that religious openness, through trust and altruism, may have a pro-trade effect.
A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes
The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis
A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes
The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis
Optimal -beam at the CERN-SPS
A -beam with maximum (for \helio ions) or
(for \neon) could be achieved at the CERN-SPS. We study the sensitivity to
and of such a beam as function of , optimizing
with the baseline constrained to CERN-Frejus (130 km), and also with
simultaneous variation of the baseline. These results are compared to the {\it
standard} scenario previously considered, with lower , and also
with a higher option that requires a more powerful
accelerator. Although higher is better, loss of sensitivity to and is most pronounced for below 100.Comment: 22 page
A Beta Beam complex based on the machine upgrades for the LHC
The Beta Beam CERN design is based on the present LHC injection complex and
its physics reach is mainly limited by the maximum rigidity of the SPS. In
fact, some of the scenarios for the machine upgrades of the LHC, particularly
the construction of a fast cycling 1 TeV injector (``Super-SPS''), are very
synergic with the construction of a higher Beta Beam. At the energies
that can be reached by this machine, we demonstrate that dense calorimeters can
already be used for the detection of at the far location. Even at
moderate masses (40 kton) as the ones imposed by the use of existing
underground halls at Gran Sasso, the CP reach is very large for any value of
that would provide evidence of appearance at T2K or
NOA (). Exploitation of matter effects at the
CERN to Gran Sasso distance provides sensitivity to the neutrino mass hierarchy
in significant areas of the plane
Hemodynamic and EEG Time-Courses During Unilateral Hand Movement in Patients with Cortical Myoclonus. An EEG-fMRI and EEG-TD-fNIRS Study.
Multimodal human brain mapping has been proposed as an integrated approach capable of improving the recognition of the cortical correlates of specific neurological functions. We used simultaneous EEG-fMRI (functional magnetic resonance imaging) and EEG-TD-fNIRS (time domain functional near-infrared spectroscopy) recordings to compare different hemodynamic methods with changes in EEG in ten patients with progressive myoclonic epilepsy and 12 healthy controls. We evaluated O(2)Hb, HHb and Blood oxygen level-dependent (BOLD) changes and event-related desynchronization/synchronization (ERD/ERS) in the alpha and beta bands of all of the subjects while they performed a simple motor task. The general linear model was used to obtain comparable fMRI and TD-fNIRS activation maps. We also analyzed cortical thickness in order to evaluate any structural changes. In the patients, the TD-NIRS and fMRI data significantly correlated and showed a significant lessening of the increase in O(2)Hb and the decrease in BOLD. The post-movement beta rebound was minimal or absent in patients. Cortical thickness was moderately reduced in the motor area of the patients and correlated with the reduction in the hemodynamic signals. The fMRI and TD-NIRS results were consistent, significantly correlated and showed smaller hemodynamic changes in the patients. This finding may be partially attributable to mild cortical thickening. However, cortical hyperexcitability, which is known to generate myoclonic jerks and probably accounts for the lack of EEG beta-ERS, did not reflect any increased energy requirement. We hypothesize that this is due to a loss of inhibitory neuronal components that typically fire at high frequencies
Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos
Because the propagation of neutrinos is affected by the presence of Earth
matter, it opens new possibilities to probe the Earth's interior. Different
approaches range from techniques based upon the interaction of high energy
(above TeV) neutrinos with Earth matter, to methods using the MSW effect on the
neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle,
neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.)
can be used. In this talk, we summarize and compare different approaches with
an emphasis on more recent developments. In addition, we point out other
geophysical aspects relevant for neutrino oscillations.Comment: 22 pages, 9 figures. Proceedings of ``Neutrino sciences 2005:
Neutrino geophysics'', December 14-16, 2005, Honolulu, USA. Minor changes,
some references added. Final version to appear in Earth, Moon, and Planet
New physics searches at near detectors of neutrino oscillation experiments
We systematically investigate the prospects of testing new physics with tau
sensitive near detectors at neutrino oscillation facilities. For neutrino beams
from pion decay, from the decay of radiative ions, as well as from the decays
of muons in a storage ring at a neutrino factory, we discuss which effective
operators can lead to new physics effects. Furthermore, we discuss the present
bounds on such operators set by other experimental data currently available.
For operators with two leptons and two quarks we present the first complete
analysis including all relevant operators simultaneously and performing a
Markov Chain Monte Carlo fit to the data. We find that these effects can induce
tau neutrino appearance probabilities as large as O(10^{-4}), which are within
reach of forthcoming experiments. We highlight to which kind of new physics a
tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX
Search for Neutrinoless Double-Beta Decay of Te with CUORE-0
We report the results of a search for neutrinoless double-beta decay in a
9.8~kgyr exposure of Te using a bolometric detector array,
CUORE-0. The characteristic detector energy resolution and background level in
the region of interest are FWHM and ~counts/(keVkgyr), respectively. The
median 90%~C.L. lower-limit sensitivity of the experiment is and surpasses the sensitivity of previous searches. We find
no evidence for neutrinoless double-beta decay of Te and place a
Bayesian lower bound on the decay half-life, ~ at 90%~C.L. Combining CUORE-0 data with the 19.75~kgyr
exposure of Te from the Cuoricino experiment we obtain at 90%~C.L.~(Bayesian), the most stringent
limit to date on this half-life. Using a range of nuclear matrix element
estimates we interpret this as a limit on the effective Majorana neutrino mass,
-- .Comment: 6 pages, 5 figures, updated version as published in PR
Neutrino hierarchy from CP-blind observables with high density magnetized detectors
High density magnetized detectors are well suited to exploit the outstanding
purity and intensities of novel neutrino sources like Neutrino Factories and
Beta Beams. They can also provide independent measurements of leptonic mixing
parameters through the observation of atmospheric muon-neutrinos. In this
paper, we discuss the combination of these observables from a multi-kton iron
detector and a high energy Beta Beam; in particular, we demonstrate that even
with moderate detector granularities the neutrino mass hierarchy can be
determined for values greater than 4.Comment: 16 pages, 7 figures. Added a new section discussing systematic errors
(sec 5.2); sec.5.1 and 4 have been extended. Version to appear in EPJ
- …
