95 research outputs found
Adhesion-induced phase separation of multiple species of membrane junctions
A theory is presented for the membrane junction separation induced by the
adhesion between two biomimetic membranes that contain two different types of
anchored junctions (receptor/ligand complexes). The analysis shows that several
mechanisms contribute to the membrane junction separation. These mechanisms
include (i) the height difference between type-1 and type-2 junctions is the
main factor which drives the junction separation, (ii) when type-1 and type-2
junctions have different rigidities against stretch and compression, the
``softer'' junctions are the ``favored'' species, and the aggregation of the
softer junction can occur, (iii) the elasticity of the membranes mediates a
non-local interaction between the junctions, (iv) the thermally activated shape
fluctuations of the membranes also contribute to the junction separation by
inducing another non-local interaction between the junctions and renormalizing
the binding energy of the junctions. The combined effect of these mechanisms is
that when junction separation occurs, the system separates into two domains
with different relative and total junction densities.Comment: 23 pages, 6 figure
Thermodynamics of Electrolytes on Anisotropic Lattices
The phase behavior of ionic fluids on simple cubic and tetragonal
(anisotropic) lattices has been studied by grand canonical Monte Carlo
simulations. Systems with both the true lattice Coulombic potential and
continuous-space electrostatic interactions have been investigated. At
all degrees of anisotropy, only coexistence between a disordered low-density
phase and an ordered high-density phase with the structure similar to ionic
crystal was found, in contrast to recent theoretical predictions. Tricritical
parameters were determined to be monotonously increasing functions of
anisotropy parameters which is consistent with theoretical calculations based
on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like
behavior is observed, from which we estimated the dimensionless tricritical
temperature and density for the two-dimensional square lattice electrolyte to
be and .Comment: submitted to PR
Secretins of type-two secretion systems are necessary for exopolymeric slime secretion in cyanobacteria and myxobacteria
Cyanobacteria and myxobacteria display gliding motility associated with the secretion of an exopolymeric slime through nozzle-like structures. Here, we use biochemical and structural assays to show that these nozzles are composed of secretins of the PilQ/GspD family, which are known to form outer membrane gates in type-two secretion systems (T2SSs) and other bacterial protein secretion systems. We show that gspD is an essential gene in Myxococcus xanthus, and its downregulation by conditional knockdown renders this bacterium defective in both slime secretion and gliding motility. In cyanobacteria, available data suggest that the exopolymeric slime is a polysaccharide, although the precise nature of the slime in myxobacteria remains unclear. Our results, therefore, indicate that secretins may be required for the secretion of non-proteinaceous polymers in certain bacteria
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
A GPS-Based Personalized Pedestrian Route Recording Smartphone Application for the Blind
Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria.
Bacterial cells in their native environments must cope with factors that compromise the integrity of the cell. The mechanisms of coping with damage in a social or multicellular context are poorly understood. Here we investigated how a model social bacterium, Myxococcus xanthus, approaches this problem. We focused on the social behavior of outer membrane exchange (OME), in which cells transiently fuse and exchange their outer membrane (OM) contents. This behavior requires TraA, a homophilic cell surface receptor that identifies kin based on similarities in a polymorphic region, and the TraB cohort protein. As observed by electron microscopy, TraAB overexpression catalyzed a prefusion OM junction between cells. We then showed that damage sustained by the OM of one population was repaired by OME with a healthy population. Specifically, LPS mutants that were defective in motility and sporulation were rescued by OME with healthy donors. In addition, a mutant with a conditional lethal mutation in lpxC, an essential gene required for lipid A biosynthesis, was rescued by Tra-dependent interactions with a healthy population. Furthermore, lpxC cells with damaged OMs, which were more susceptible to antibiotics, had resistance conferred to them by OME with healthy donors. We also show that OME has beneficial fitness consequences to all cells. Here, in merged populations of damaged and healthy cells, OME catalyzed a dilution of OM damage, increasing developmental sporulation outcomes of the combined population by allowing it to reach a threshold density. We propose that OME is a mechanism that myxobacteria use to overcome cell damage and to transition to a multicellular organism
A Multimodal Tablet–Based Application for the Visually Impaired for Detecting and Recognizing Objects in a Home Environment
- …
