3,902 research outputs found

    Swap Bribery

    Full text link
    In voting theory, bribery is a form of manipulative behavior in which an external actor (the briber) offers to pay the voters to change their votes in order to get her preferred candidate elected. We investigate a model of bribery where the price of each vote depends on the amount of change that the voter is asked to implement. Specifically, in our model the briber can change a voter's preference list by paying for a sequence of swaps of consecutive candidates. Each swap may have a different price; the price of a bribery is the sum of the prices of all swaps that it involves. We prove complexity results for this model, which we call swap bribery, for a broad class of election systems, including variants of approval and k-approval, Borda, Copeland, and maximin.Comment: 17 page

    Randomisation and Derandomisation in Descriptive Complexity Theory

    Full text link
    We study probabilistic complexity classes and questions of derandomisation from a logical point of view. For each logic L we introduce a new logic BPL, bounded error probabilistic L, which is defined from L in a similar way as the complexity class BPP, bounded error probabilistic polynomial time, is defined from PTIME. Our main focus lies on questions of derandomisation, and we prove that there is a query which is definable in BPFO, the probabilistic version of first-order logic, but not in Cinf, finite variable infinitary logic with counting. This implies that many of the standard logics of finite model theory, like transitive closure logic and fixed-point logic, both with and without counting, cannot be derandomised. Similarly, we present a query on ordered structures which is definable in BPFO but not in monadic second-order logic, and a query on additive structures which is definable in BPFO but not in FO. The latter of these queries shows that certain uniform variants of AC0 (bounded-depth polynomial sized circuits) cannot be derandomised. These results are in contrast to the general belief that most standard complexity classes can be derandomised. Finally, we note that BPIFP+C, the probabilistic version of fixed-point logic with counting, captures the complexity class BPP, even on unordered structures

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Awareness of Meningococcal disease among travelers from the United Kingdom to the meningitis belt in Africa

    Get PDF
    Meningococcal disease causes considerable morbidity and has a high case-fatality rate. In the United Kingdom, the meningococcal quadrivalent vaccine is recommended for travelers visiting the meningitis belt of Africa. We analyzed 302 responses to a cross-sectional study conducted in 2010 of travelers who had visited the meningitis belt recently or were shortly due to travel there. Using the results of an online questionnaire, we assessed knowledge and understanding of meningococcal disease and likelihood of uptake of meningococcal immunization before travel. Meningococcal vaccine uptake was 30.1%. Although global scores in the questionnaire did not correlate with vaccine uptake, knowledge of the meningitis belt and knowledge of certain key symptoms or signs were statistically associated with high vaccine uptake. We conclude that improved education of travelers may improve vaccine uptake before travel to the meningitis belt in Africa

    A Covariant Approach To Ashtekar's Canonical Gravity

    Get PDF
    A Lorentz and general co-ordinate co-variant form of canonical gravity, using Ashtekar's variables, is investigated. A co-variant treatment due to Crnkovic and Witten is used, in which a point in phase space represents a solution of the equations of motion and a symplectic functional two form is constructed which is Lorentz and general co-ordinate invariant. The subtleties and difficulties due to the complex nature of Ashtekar's variables are addressed and resolved.Comment: 18 pages, Plain Te

    Direct detection of a substellar companion to the young nearby star PZ Telescopii

    Full text link
    Aims: We study the formation of substellar objects (exoplanets and brown dwarfs) as companions to young nearby stars. Methods: With high contrast AO imaging obtained with NACO at ESO's VLT we search for faint companion-candidates around our targets, whose companionship can be confirmed with astrometry. Results: In the course of our imaging campaign we found a faint substellar companion of the nearby pre-main sequence star PZ Tel, a member of the beta Pic moving group. The companion is 5-6 mag fainter than its host star in JHK and is located at a separation of only 0.3 arcsec (or 15 AU of projected separation) north-east of PZ Tel. Within three NACO observing epochs we could confirm common proper motion (>39 sigma) and detected orbital motion of PZ Tel B around its primary (>37 sigma). The photometry of the newly found companion is consistent with a brown dwarf with a mass of 24 to 40 MJup, at the distance (50 pc) and age (8-20 Myr) of PZ Tel. The effective temperature of the companion, derived from its photometry, ranges between 2500 and 2700 K, which corresponds to a spectral type between M6 and M8. After beta Pic b, PZ Tel B is the second closest substellar companion imaged directly around a young star.Comment: accepted for publication in A&A Letter

    A Test of Pre-Main-Sequence Lithium Depletion Models

    Get PDF
    Despite the extensive study of lithium depletion during pre-main-sequence contraction, studies of individual stars show discrepancies between ages determined from the HR diagram and ages determined from lithium depletion (Song et al. 2002, White & Hillenbrand 2005) indicating open questions in the pre-main-sequence evolutionary models. To further test these models, we present high resolution spectra for members of the Beta Pictoris Moving Group (BPMG), which is young and nearby. We measure equivalent widths of the 6707.8 Angstrom Li I line in these stars and use them to determine lithium abundances. We combine the lithium abundance with the predictions of pre-main-sequence evolutionary models in order to calculate a lithium depletion age for each star. We compare this age to the age predicted by the HR diagram of the same model. We find that the evolutionary models under-predict the amount of lithium depletion for the BPMG given its nominal HR diagram age of ~12 Myr (Zuckerman et al. 2001), particularly for the mid-M stars, which have no observable Li I line. This results in systematically older ages calculated from lithium depletion isochrones than from the HR diagram. We suggest that this discrepancy may be related to the discrepancy between measured M-dwarf radii and the smaller radii predicted by evolutionary models.Comment: Accepted by ApJ; 21 pages, 5 figure

    Rocky Planetesimals as the Origin of Metals in DZ Stars

    Full text link
    {Abridged}. An analysis of the calcium and hydrogen abundances, Galactic positions and kinematics of 146 DZ stars from the Sloan Digital Sky Survey demonstrates that interaction with the interstellar medium cannot account for their externally polluted atmospheres. The calcium-to-hydrogen ratios for the 37 DZA stars are dominated by super-solar values, as are the lower limits for the remaining 109 DZ stars. All together their metal-contaminated convective envelopes contain 10^{20+-2} g of calcium, commensurate with the masses of calcium inferred for large asteroids. It is probable that these stars are contaminated by circumstellar matter; the rocky remains of terrestrial planetary systems. In this picture, two predictions emerge: 1) at least 3.5% of all main sequence A- and F-type stars build terrestrial planets; and 2) the DZA stars are externally polluted by both metals and hydrogen, and hence constrain the frequency and mass of water-rich, extrasolar planetesimals.Comment: Accepted to MNRA
    corecore