530 research outputs found
Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module
Thanks to the wide availability of bandwidth, the millimeter wave (mmWave)
frequencies will provide very high data rates to mobile users in next
generation 5G cellular networks. However, mmWave links suffer from high
isotropic pathloss and blockage from common materials, and are subject to an
intermittent channel quality. Therefore, protocols and solutions at different
layers in the cellular network and the TCP/IP protocol stack have been proposed
and studied. A valuable tool for the end-to-end performance analysis of mmWave
cellular networks is the ns-3 mmWave module, which already models in detail the
channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the
Long Term Evolution (LTE) stack for the higher layers. In this paper we present
an implementation for the ns-3 mmWave module of multi connectivity techniques
for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA)
and Dual Connectivity (DC), and discuss how they can be integrated to increase
the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201
Commitment and Dispatch of Heat and Power Units via Affinely Adjustable Robust Optimization
The joint management of heat and power systems is believed to be key to the
integration of renewables into energy systems with a large penetration of
district heating. Determining the day-ahead unit commitment and production
schedules for these systems is an optimization problem subject to uncertainty
stemming from the unpredictability of demand and prices for heat and
electricity. Furthermore, owing to the dynamic features of production and heat
storage units as well as to the length and granularity of the optimization
horizon (e.g., one whole day with hourly resolution), this problem is in
essence a multi-stage one. We propose a formulation based on robust
optimization where recourse decisions are approximated as linear or
piecewise-linear functions of the uncertain parameters. This approach allows
for a rigorous modeling of the uncertainty in multi-stage decision-making
without compromising computational tractability. We perform an extensive
numerical study based on data from the Copenhagen area in Denmark, which
highlights important features of the proposed model. Firstly, we illustrate
commitment and dispatch choices that increase conservativeness in the robust
optimization approach. Secondly, we appraise the gain obtained by switching
from linear to piecewise-linear decision rules within robust optimization.
Furthermore, we give directions for selecting the parameters defining the
uncertainty set (size, budget) and assess the resulting trade-off between
average profit and conservativeness of the solution. Finally, we perform a
thorough comparison with competing models based on deterministic optimization
and stochastic programming.Comment: 31 page
Enabling RAN Slicing Through Carrier Aggregation in mmWave Cellular Networks
The ever increasing number of connected devices and of new and heterogeneous
mobile use cases implies that 5G cellular systems will face demanding technical
challenges. For example, Ultra-Reliable Low-Latency Communication (URLLC) and
enhanced Mobile Broadband (eMBB) scenarios present orthogonal Quality of
Service (QoS) requirements that 5G aims to satisfy with a unified Radio Access
Network (RAN) design. Network slicing and mmWave communications have been
identified as possible enablers for 5G. They provide, respectively, the
necessary scalability and flexibility to adapt the network to each specific use
case environment, and low latency and multi-gigabit-per-second wireless links,
which tap into a vast, currently unused portion of the spectrum. The
optimization and integration of these technologies is still an open research
challenge, which requires innovations at different layers of the protocol
stack. This paper proposes to combine them in a RAN slicing framework for
mmWaves, based on carrier aggregation. Notably, we introduce MilliSlice, a
cross-carrier scheduling policy that exploits the diversity of the carriers and
maximizes their utilization, thus simultaneously guaranteeing high throughput
for the eMBB slices and low latency and high reliability for the URLLC flows.Comment: 8 pages, 8 figures. Proc. of the 18th Mediterranean Communication and
Computer Networking Conference (MedComNet 2020), Arona, Italy, 202
Trading wind energy on the basis of probabilistic forecasts both of wind generation and of market quantities
- …
