503 research outputs found

    Exact ground states of generalized Hubbard models

    Full text link
    We present a simple method for the construction of exact ground states of generalized Hubbard models in arbitrary dimensions. This method is used to derive rigorous criteria for the stability of various ground state types, like the η\eta-pairing state, or N\'eel and ferromagnetic states. Although the approach presented here is much simpler than the ones commonly used, it yields better bounds for the region of stability.Comment: Revtex, 8 page

    Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In

    Full text link
    Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and in elastically (Raman) from natural targets of Au, Dy and In.15 new cross sections were measured. Evidence is presented for a slight deformation in the 197Au nucleus, generally believed to be spherical. It is predicted, on the basis of these measurements, that the Giant Dipole Resonance of Dy is very similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in In.Comment: 31 pages, 11 figure

    Quantum Fluctuations around the Electroweak Sphaleron

    Full text link
    We present an analysis of the quantum fluctuations around the electroweak sphaleron and calculate the associated determinant which gives the 1--loop correction to the sphaleron transition rate. The calculation differs in various technical aspects from a previous analysis by Carson et al. so that it can be considered as independent. The numerical results differ also -- by several orders of magnitude -- from those of this previous analysis; we find that the sphaleron transition rate is much less suppressed than found previously.Comment: DO-TH-93/19 39 pages, 5 figures (available on request as Postscript files or via Fax or mail), LaTeX, no macros neede

    Compton Scattering by Nuclei

    Get PDF
    The concept of Compton scattering by even-even nuclei from giant-resonance to nucleon-resonance energies and the status of experimental and theoretical researches in this field are outlined. Nuclear Compton scattering in the giant-resonance energy-region provides information on the dynamical properties of the in-medium mass of the nucleon. The electromagnetic polarizabilities of the nucleon in the nuclear medium can be extracted from nuclear Compton scattering data obtained in the quasi-deuteron energy-region. Recent results are presented for two-body effects due to the mesonic seagull amplitude and due to the excitation of nucleon internal degrees of freedom accompanied by meson exchanges. Due to these studies the in-medium electromagnetic polarizabilities are by now well understood, whereas the understanding of nuclear Compton scattering in the Delta-resonance range is only at the beginning. Phenomenological methods how to include retardation effects in the scattering amplitude are discussed and compared with model predictions.Comment: 146 pages, 37 figures, submitted to Phys. Report

    η\eta-pairing as a mechanism of superconductivity in models of strongly correlated electrons

    Full text link
    We consider extended versions of the Hubbard model which contain additional interactions between nearest neighbours. In this letter we show that a large class of these models has a superconducting ground state in arbitrary dimensions. In some special cases we are able to find the complete phase diagram. The superconducting phase exist even for moderate repulsive values of the Hubbard interaction UU.Comment: 9 pages, RevTex, ITP-SB-94-18, 1 PS figure appende

    The orbit and stellar masses of the archetype colliding-wind binary WR 140

    Full text link
    We present updated orbital elements for the Wolf-Rayet (WR) binary WR 140 (HD 193793; WC7pd + O5.5fc). The new orbital elements were derived using previously published measurements along with 160 new radial velocity measurements across the 2016 periastron passage of WR 140. Additionally, four new measurements of the orbital astrometry were collected with the CHARA Array. With these measurements, we derive stellar masses of MWR=10.31±0.45MM_{\rm WR} = 10.31\pm0.45 M_\odot and MO=29.27±1.14MM_{\rm O} = 29.27\pm1.14 M_{\odot}. We also include a discussion of the evolutionary history of this system from the Binary Population and Spectral Synthesis (BPASS) model grid to show that this WR star likely formed primarily through mass loss in the stellar winds, with only a moderate amount of mass lost or transferred through binary interactions.Comment: 10 pages, 5 figure

    Der Matrizeneigenwertalgorithmus VELOCITAS für Parallelrechner

    No full text

    Beiträge zum Runge-Kutta-Verfahren

    No full text
    corecore