64 research outputs found
Benefits of reaction engineering in biocatalysis
Please click Additional Files below to see the full abstract
Otkriće enzima za razgradnju plastike
Plastics are highly advanced materials that have a vast array of applications and are produced globally in an approximate amount of 350 to 400 million tons every year. Nevertheless, there are serious concerns about plastic waste and pollution as a result of the misuse and lack of control of their use in industries, including packaging, transportation, manufacturing, and agriculture. Approximately 1,000 years are required for plastic bags to decompose efficiently. Additionally, CO2 and dioxins are released into the atmosphere by burning plastics, and they contribute to global warming. The Earth’s environment is overwhelmed with waste, mostly from poor recycling practices and low circular usage, resulting in millions of tons of waste generated annually. To combat this, new technologies for recycling post-consumer plastics are desperately needed to decrease plastic waste and improve the environment, while also finding ways to utilise these materials. Due to the inadequate disposal methods currently available for plastic waste, there has been increased interest in the use of microorganisms and enzymes designed for the biodegradation of non-degradable synthetic polymers via biocatalytic depolymerisation indicating that plastics treatment and recycling can be more efficient and sustainable.Plastika je daleko najnapredniji materijal kad je riječ o primjeni i svojstvima, a procjenjuje se da se svake godine globalno proizvede 350 do 400 milijuna tona. Ona je postala ozbiljan problem s obzirom na odlaganje plastičnog otpada i onečišćenje, zbog njezine nekontrolirane upotrebe u različite svrhe tijekom posljednjih desetljeća, kao što su pakiranje, transport, industrija i poljoprivreda. Za učinkovitu razgradnju plastičnih vrećica potrebno je otprilike 1000 godina. Osim toga, izgaranjem plastike u atmosferu se ispuštaju CO2 i dioksini koji doprinose globalnom zatopljenju. Zemaljski kopneni ili morski okoliš akumulira milijune tona otpada svake godine zbog lošeg recikliranja i niske kružne upotrebe. Inovativne tehnologije za recikliranje otpadne plastike prijeko su potrebne za smanjenje plastičnog otpada i postizanje ciljeva kvalitete okoliša uz valorizaciju potrošne plastike. Zbog trenutačno neadekvatnih metoda zbrinjavanja plastičnog otpada povećan je fokus na upotrebu mikroorganizama i enzima dizajniranih za biorazgradnju nerazgradivih sintetičkih polimera putem biokatalitičke depolimerizacije, što ukazuje na to da obrada plastike i recikliranje mogu biti učinkovitiji i održivi
Assessment of C-type halohydrin dehalogenase stability
Please click Additional Files below to see the full abstract
Povećanje učinkovitosti bioremedijacije na razini gena
Bioremedijacija se koristi potencijalom mikroorganizama pri uklanjanju onečišćenja iz okoliša. Metabolički putovi kojima se onečišćujuća tvar razgrađuje u manje toksične tvari vrlo su kompleksni. Naprednim tehnikama molekularne biologije mehanizmi bioremedijacije izučavaju se na razini gena. Gen zaslužan za proizvodnju proteina koji razgrađuje onečišćujuću tvar može se izolirati i unijeti u drugi organizam, čime nastaje organizam s poboljšanim bioremedijacijskim svojstvima. Brojna se svjetska istraživanja temelje na genetičkom inženjerstvu na mikroorganizmima, no najveću prepreku upotrebe takvih organizama u bioremedijaciji čine zakonski okviri te nedovoljno poznavanje posljedica njihova oslobađanja u okoliš
Phytoremediation – Overview and Perspective
Remedijacija tala onečišćenih kompleksnim mješavinama organskih tvari i teških metala jedan je od najvećih izazova obnavljanja okoliša. Fitoremedijacija je naziv za skup postupaka koji upotrebljavaju biljke, njihove enzime i prisutne mikroorganizme iz zone korijenja za izolaciju, transport, detoksikaciju i mineralizaciju ksenobiotika, čime se smanjuje njihova koncentracija, pokretljivost ili toksični učinci. Fitoekstrakcija, fitostabilizacija, fitovolatizacija, fitorazgradnja i rizorazgradnja imaju velik potencijal za nedestruktivnu remedijaciju tala, što pokazuju brojna istraživanja u laboratorijskom mjerilu. Kako bi fitoremedijacija postala pouzdana tehnologija za širok spektar primjena u većem mjerilu, potrebno je ulagati resurse u nova istraživanja s ciljem boljeg razumijevanja procesa u cjelini, posebice na genetičkoj i biokemijskoj razini.
Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna.Remediation of soils contaminated with complex mixtures of organic compounds and heavy metals is one of the greatest challenges of environmental renewal. Phytoremediation is the name for a set of techniques that employ plants, their enzymes, and associated microorganisms in the root zone for isolation, transport, detoxification, and mineralization of xenobiotics in the soil, thereby reducing their concentration, mobility or toxic effects. Phytoextraction, phytostabilization, phytovolatization, phytodegradation, and rhizodegradation have a great potential for non-destructive remediation of soils as shown by numerous laboratory-scale studies. In order for phytoremediation to become a reliable technology for a wide range of applications at a larger scale, resources need to be invested in a new research with an aim to better understand the process as a whole, especially at the genetic and biochemical levels.
This work is licensed under a Creative Commons Attribution 4.0 International License
Biokataliza u doba zelene revolucije
U dobu zelene revolucije sve više raste svijest o potrebi razvoja održivijih alternativa tradicionalnim industrijskim procesima. Gotovo svi industrijski procesi upotrebljavaju katalizatore koji su nerazgradivi i mogu biti štetni za okoliš. S druge strane, biokatalizatori su enzimi – molekule evoluirale u fiziološkom okruženju koje su u potpunosti biorazgradive, a u blagim reakcijskim uvjetima fiziološkog pH, temperature i tlaka okoline pokazuju najveću katalitičku aktivnost i učinkovitost. Biokatalizu ljudi primjenjuju još od starog vijeka u proizvodnji hrane poput sira, kiselog tijesta, piva, vina i octa bez znanja o pozadini procesa koji se odvija, a u posljednjih nekoliko desetljeća porasla je i njezina primjena u industriji, posebice u proizvodnji lijekova i kemikalija. Prepoznate su sve prednosti koje imaju biokatalizatori, poput njihove velike selektivnosti, velike specifičnosti prema supstratu i biorazgradivosti, te postaje sve jasnije da biokataliza može pomoći ispunjenju ciljeva održivog razvoja i implementaciji zelene kemije u industrijske procese s maksimalnim iskorištenjem resursa uz minimalno stvaranje otpada. Iako biokataliza ispunjava gotovo sva načela zelene kemije i potencijal biokatalizatora eksponencijalno raste razvojem inovacija i tehnološkog napretka, posebno u područjima biotehnologije i molekularne biologije, sama prisutnost biokatalizatora u kemijskom procesu ne podrazumijeva održivost procesa. Ekološku prihvatljivost, ali i ekonomsku isplativost, procesa je potrebno dokazati što ranije tijekom njegova razvoja praćenjem raznih procesnih pokazatelja kako bi se uštedjeli i vrijeme i novac
Multi-reaction kinetic modeling for the peroxidase-aldolase cascade synthesis of a D-fagomine precursor
Altres ajuts: Acord transformatiu CRUE-CSICThe feasibility of a peroxidase-aldolase cascade reaction for the synthesis of therapeutically-valuable iminocyclitols is discussed herein. A two-enzyme system consisting of chloroperoxidase (CPO) and D-fructose-6-phosphate aldolase (FSA) was evaluated for the synthesis of a D-fagomine precursor (preFagomine) from a N-Cbz-3-aminopropanol. An in-depth, systematic, step-by-step kinetic modeling of seven reactions and two inactivation decays was proposed to elucidate the reaction mechanism, prepare suitable stabilized biocatalysts, and find the optimal conditions for its application. The model described accurately the data and predicted the outcome at different experimental conditions. The inactivation of FSA caused by CPO was identified as the main bottleneck in the reaction. A two-step reaction approach and the use of immobilized enzymes on magnetic nanoparticle clusters and functionalized agarose carriers increased the stability of FSA, with an 1839-fold higher preFagomine formation per mol of enzyme in comparison to a one-pot reaction using soluble enzymes
Application of Mathematical Modelling in Development of Enzymatic Cascade Reactions
“Sustavska biokataliza” (engl. systems biocatalysis), odnosno provedba kaskadnih reakcija koje oponašaju stanične metaboličke puteve danas se sve češće primjenjuje. Kaskadne reakcije imaju brojne prednosti nad tradicionalnim kemijskim postupcima, međutim, za uspješnu optimizaciju i prenošenje takvih kompleksnih sustava u veće, industrijsko mjerilo potrebno je primijeniti reakcijsko inženjerstvo. U ovom preglednom radu navedeni su primjeri uspješne primjene matematičkog modeliranja na razvoj enzimskih kaskadnih reakcija koji pokazuju važnost i potencijal te metodologije.
Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna.Today, systems biocatalysis, i.e., the implementation of cascade reactions that mimic cellular metabolic pathways, is increasingly being used. Cascade reactions have numerous advantages over traditional chemical processes; however, in order to successfully optimize and transfer such complex systems to a larger, industrial scale, it is necessary to apply reaction engineering. This review paper provides examples of the successful application of mathematical modelling in development of enzymatic cascade reactions that demonstrate the importance and potential of this methodology.
This work is licensed under a Creative Commons Attribution 4.0 International License
Enzyme Reaction Engineering as a Tool to Investigate the Potential Application of Enzyme Reaction Systems
It is widely recognized and accepted that although biocatalysis is an exquisite tool to synthesize natural and unnatural compounds under mild process conditions, much can be done to better understand these processes as well as detect resulting bottlenecks and help to resolve them. This is the precise purpose of enzyme reaction engineering, a scientific discipline that focuses on investigating enzyme reactions with the goal of facilitating their implementation on an industrial scale. Even though reaction schemes of enzyme reactions often seem simple, in practice, the interdependence of different variables is unknown, very complex and may prevent further applications. Therefore, in this work, important aspects of the implementation of enzyme reactions are discussed using simple and complex examples, along with principles of mathematical modelling that provide explanations for why some reactions do not proceed as planned
- …
