160,251 research outputs found

    Spectral Action for Robertson-Walker metrics

    Get PDF
    We use the Euler-Maclaurin formula and the Feynman-Kac formula to extend our previous method of computation of the spectral action based on the Poisson summation formula. We show how to compute directly the spectral action for the general case of Robertson-Walker metrics. We check the terms of the expansion up to a_6 against the known universal formulas of Gilkey and compute the expansion up to a_{10} using our direct method

    An Approach to Assess Solder Interconnect Degradation Using Digital Signal

    Get PDF
    Department of Human and Systems EngineeringDigital signals used in electronic systems require reliable data communication. It is necessary to monitor the system health continuously to prevent system failure in advance. Solder joints in electronic assemblies are one of the major failure sites under thermal, mechanical and chemical stress conditions during their operation. Solder joint degradation usually starts from the surface where high speed signals are concentrated due to the phenomenon referred to as the skin effect. Due to the skin effect, high speed signals are sensitive when detecting the early stages of solder joint degradation. The objective of the thesis is to assess solder joint degradation in a non-destructive way based on digital signal characterization. For accelerated life testing the stress conditions were designed in order to generate gradual degradation of solder joints. The signal generated by a digital signal transceiver was travelling through the solder joints to continuously monitor the signal integrity under the stress conditions. The signal properities were obtained by eye parameters and jitter, which represented the characteristics of the digital signal in terms of noise and timing error. The eye parameters and jitter exhibited significant increase after the exposure of the solder joints to the stress conditions. The test results indicated the deterioration of the signal integrity resulted from the solder joint degradation, and proved that high speed digital signals could serve as a non-destructive tool for sensing physical degradation. Since this approach is based on the digital signals used in electronic systems, it can be implemented without requiring additional sensing devices. Furthermore, this approach can serve as a proactive prognostic tool, which provides real-time health monitoring of electronic systems and triggers early warning for impending failure.ope

    Virtual viewpoint three-dimensional panorama

    Get PDF
    Conventional panoramic images are known to provide for an enhanced field of view in which the scene always has a fixed appearance. The idea presented in this paper focuses on the use of the concept of virtual viewpoint creation to generate different panoramic images of the same scene with three-dimensional component. Three-dimensional effect in a resultant panorama is realized by superimposing a stereo-pair of panoramic images

    Disparity map generation based on trapezoidal camera architecture for multiview video

    Get PDF
    Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map

    Multiscalar approaches to settlement pattern analysis

    Get PDF
    This paper has emphasized the highly reflexive approach necessary for the correct identification and interpretation of the processes behind settlement patterns. In our opinion, the key challenges are: (i) to define a sample/study area and its levels of search intensity appropriately (correcting for or exploring “edge effects” statistically where necessary); (ii) to assess and sub-divide site size, function and date range (analysing comparable features only and/or arbitrating uncertain cases statistically); (iii) to account for the resource structure of the landscape (either by only considering environmental homogenous sub-regions or by factoring resource preferences into the significance-testing stage of analysis), and (iv) to use techniques of analysis that are sensitive to detecting patterns at different spatial scales. The latter in particular is an area increasingly well-explored in other disciplines, but as yet with minimal impact on archaeological practice. There remains some value in Clark and Evan’s nearest neighbour function for identifying relationships between sites at one scale of analysis, but it may fail to detect larger-scale patterning. More critically, the dichotomy it encourages between “nucleated” and “dispersed” is at best an overly simplistic model and, at worst, bears little relationship to the reality of settlement organization, which at different scales can show both nucleated and dispersed components. In our Kytheran case study, there is obviously further work to be done, but even with the existing dataset, we have shown that using a combination of Monte Carlo testing, frequency distributions, local density mappings and Ripley’s K function allows a more sensitive assessment of multiscalar patters and therefore a more critical evaluation of the processes underlying settlement distributions

    Importance of geometry of the extracellular matrix in endochondral bone differentiation.

    Get PDF
    Subcutaneous implantation of coarse powders (74-420 micron) of demineralized diaphyseal bone matrix resulted in the local differentiation of endochondral bone. However, implantation of matrix with particle size of 44-74 micron (Fine matrix) did not induce bone. We have recently reported that the dissociative extraction of coarse matrix with 4 M guanidine HCl resulted in a complete loss of the ability of matrix to induce endochondral bone; the total loss of biological activity could be restored by reconstitution of extracted soluble components with inactive residue. To determine the possible biochemical potential of fine matrix to induce bone, the matrix was extracted in 4 M guanidine HCl and the extract was reconstituted with biologically inactive 4 M guanidine HCl-treated coarse bone matrix residue. There was a complete restoration of the biological activity by the extract of fine matrix upon reconstitution with extracted coarse matrix. Polyacrylamide gel electrophoresis of the extract of fine matrix revealed similar protein profiles as seen for the extract of coarse matrix. Gel filtration of the 4 M guanidine HCl extract of fine powder on Sepharose CL-6B and the subsequent reconstitution of various column fractions with inactive coarse residue showed that fractions with proteins of 20,000-50,000 mol wt induced new bone formation. These observations demonstrate that although fine bone matrix contains, osteoinductive proteins, matrix geometry (size) is a critical factor in triggering the biochemical cascade of endochondral bone differentiation. Mixing of coarse matrix with Fine results in partial response and it was confined to areas in contact with coarse particles. The results imply a role for geometry of extracellular bone matrix in anchorage-dependent proliferation and differentiation of cells

    Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium.

    Get PDF
    Epiphyseal chondrocytes cultured in a medium containing 10% serum may be maintained as three dimensional aggregates and differentiate terminally into hypertrophic cells. There is an attendant expression of genes encoding type X collagen and high levels of alkaline phosphatase activity. Manipulation of the serum concentration to optimal levels of 0.1 or 0.01% in this chondrocyte pellet culture system results in formation of features of developing cartilage architecture which have been observed exclusively in growth cartilage in vivo. Cells are arranged in columns radiating out from the center of the tissue, and can be divided into distinct zones corresponding to the recognized stages of chondrocyte differentiation. Elimination of the optimal serum concentration in a chemically defined medium containing insulin eliminates the events of terminal differentiation of defined cartilage architecture. Chondrocytes continue to enlarge into hypertrophic cells and synthesize type X collagen mRNA and protein, but in the absence of the optimal serum concentration, alkaline phosphatase activity does not increase and the cells retain a random orientation. Addition of thyroxine to the chemically defined medium containing insulin and growth hormone results in dose-dependent increases in both type X collagen synthesis and alkaline phosphatase activity, and reproduces the optimal serum-induced morphogenesis of chondrocytes into a columnar pattern. These experiments demonstrate the critical role of thyroxine in cartilage morphogenesis

    Ultrasoft NLL Running of the Nonrelativistic O(v) QCD Quark Potential

    Full text link
    Using the nonrelativistic effective field theory vNRQCD, we determine the contribution to the next-to-leading logarithmic (NLL) running of the effective quark-antiquark potential at order v (1/mk) from diagrams with one potential and two ultrasoft loops, v being the velocity of the quarks in the c.m. frame. The results are numerically important and complete the description of ultrasoft next-to-next-to-leading logarithmic (NNLL) order effects in heavy quark pair production and annihilation close to threshold.Comment: 25 pages, 7 figures, 3 tables; minor modifications, typos corrected, references added, footnote adde
    corecore