11,635,653 research outputs found
Asymptotic States and the Definition of the S-matrix in Quantum Gravity
Viewing gravitational energy-momentum as equal by observation, but different
in essence from inertial energy-momentum naturally leads to the gauge theory of
volume-preserving diffeormorphisms of an inner Minkowski space. The generalized
asymptotic free scalar, Dirac and gauge fields in that theory are canonically
quantized, the Fock spaces of stationary states are constructed and the
gravitational limit - mapping the gravitational energy-momentum onto the
inertial energy-momentum to account for their observed equality - is
introduced. Next the S-matrix in quantum gravity is defined as the
gravitational limit of the transition amplitudes of asymptotic in- to
out-states in the gauge theory of volume-preserving diffeormorphisms. The so
defined S-matrix relates in- and out-states of observable particles carrying
gravitational equal to inertial energy-momentum. Finally generalized LSZ
reduction formulae for scalar, Dirac and gauge fields are established which
allow to express S-matrix elements as the gravitational limit of truncated
Fourier-transformed vacuum expectation values of time-ordered products of field
operators of the interacting theory. Together with the generating functional of
the latter established in an earlier paper [8] any transition amplitude can in
principle be computed to any order in perturbative quantum gravity.Comment: 35 page
Center motions of nonoverlapping condensates coupled by long-range dipolar interaction in bilayer and multilayer stacks
We investigate the effect of anisotropic and long-range dipole-dipole
interaction (DDI) on the center motions of nonoverlapping Bose-Einstein
condensates (BEC) in bilayer and multilayer stacks. In the bilayer, it is shown
analytically that while DDI plays no role in the in-phase modes of center
motions of condensates, out-of-phase mode frequency () depends
crucially on the strength of DDI (). At the small- limit,
. In the multilayer stack, transverse
modes associated with center motions of coupled condensates are found to be
optical phonon like. At the long-wavelength limit, phonon velocity is
proportional to .Comment: 7 pages, 5 figure
Concentric tubes cold-bonded by drawing and internal expansion
Metal tubes bonded together without heat application or brazing materials retain strength at elevated temperatures, and when subjected to constant or cyclic temperature gradients. Combination drawing and expansion process produces residual tangential tensile stress in the outer tube and tangential compressive stress in the inner tube
Similarity solutions of Reaction-Diffusion equation with space- and time-dependent diffusion and reaction terms
We consider solvability of the generalized reaction-diffusion equation with
both space- and time-dependent diffusion and reaction terms by means of the
similarity method. By introducing the similarity variable, the
reaction-diffusion equation is reduced to an ordinary differential equation.
Matching the resulting ordinary differential equation with known exactly
solvable equations, one can obtain corresponding exactly solvable
reaction-diffusion systems. Several representative examples of exactly solvable
reaction-diffusion equations are presented.Comment: 11 pages, 4 figure
Probes for measuring noise current in an electronic cable
Electromagnetic interference in deep-space network receiver is often caused by stray coupling from power lines. These stray signals create potential differences between ground terminals, which leads to excessive noise in receiver circuits. Pair of probes detect and measure noise currents in conductors
Microwave power receiving antenna Patent
Microwave power receiving antenna solving heat dissipation problems by construction of elements as heat pipe device
- …
