7 research outputs found
Growth trajectories for executive and social cognitive abilities in an Indian population sample: Impact of demographic and psychosocial determinants
Cognitive abilities are markers of brain development and psychopathology. Abilities, across executive, and social domains need better characterization over development, including factors that influence developmental change. This study is based on the cVEDA [Consortium on Vulnerability to Externalizing Disorders and Addictions] study, an Indian population based developmental cohort. Verbal working memory, visuo-spatial working memory, response inhibition, set-shifting, and social cognition (faux pas recognition and emotion recognition) were cross-sectionally assessed in > 8000 individuals over the ages 6-23 years. There was adequate representation across sex, urban-rural background, psychosocial risk (psychopathology, childhood adversity and wealth index, i.e. socio-economic status). Quantile regression was used to model developmental change. Age-based trajectories were generated, along with examination of the impact of determinants (sex, childhood adversity, and wealth index). Development in both executive and social cognitive abilities continued into adulthood. Maturation and stabilization occurred in increasing order of complexity, from working memory to inhibitory control to cognitive flexibility. Age related change was more pronounced for low quantiles in response inhibition (β∼4 versus </=2 for higher quantiles), but for higher quantiles in set-shifting (β > -1 versus -0.25 for lower quantiles). Wealth index had the largest influence on developmental change across cognitive abilities. Sex differences were prominent in response inhibition, set-shifting and emotion recognition. Childhood adversity had a negative influence on cognitive development. These findings add to the limited literature on patterns and determinants of cognitive development. They have implications for understanding developmental vulnerabilities in young persons, and the need for providing conducive socio-economic environments.</p
A Neurocognitive Investigation of Low-Level Arsenic Exposure Reveals Impaired Executive Function Mediated by Brain Anomalies
Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment
Background: several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. Methods: utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). Results: significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. Conclusion: adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.</p
Country-level gender inequality is associated with structural differences in the brains of women and men
Brain charts for the human lifespan
Over the past 25 years, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, there are no reference standards against which to anchor measures of individual differences in brain morphology, in contrast to growth charts for traits such as height and weight. Here, we built an interactive online resource ( www.brainchart.io ) to quantify individual differences in brain structure from any current or future magnetic resonance imaging (MRI) study, against models of expected age-related trends. With the goal of basing these on the largest and most inclusive dataset, we aggregated MRI data spanning 115 days post-conception through 100 postnatal years, totaling 122,123 scans from 100,071 individuals in over 100 studies across 6 continents. When quantified as centile scores relative to the reference models, individual differences show high validity with non-MRI brain growth estimates and high stability across longitudinal assessment. Centile scores helped identify previously unreported brain developmental milestones and demonstrated increased genetic heritability compared to non-centiled MRI phenotypes. Crucially for the study of brain disorders, centile scores provide a standardised and interpretable measure of deviation that reveals new patterns of neuroanatomical differences across neurological and psychiatric disorders emerging during development and ageing. In sum, brain charts for the human lifespan are an essential first step towards robust, standardised quantification of individual variation and for characterizing deviation from age-related trends. Our global collaborative study provides such an anchorpoint for basic neuroimaging research and will facilitate implementation of research-based standards in clinical studies
