1 research outputs found
Initial data for stationary space-times near space-like infinity
We study Cauchy initial data for asymptotically flat, stationary vacuum
space-times near space-like infinity. The fall-off behavior of the intrinsic
metric and the extrinsic curvature is characterized. We prove that they have an
analytic expansion in powers of a radial coordinate. The coefficients of the
expansion are analytic functions of the angles. This result allow us to fill a
gap in the proof found in the literature of the statement that all
asymptotically flat, vacuum stationary space-times admit an analytic
compactification at null infinity. Stationary initial data are physical
important and highly non-trivial examples of a large class of data with similar
regularity properties at space-like infinity, namely, initial data for which
the metric and the extrinsic curvature have asymptotic expansion in terms of
powers of a radial coordinate. We isolate the property of the stationary data
which is responsible for this kind of expansion.Comment: LaTeX 2e, no figures, 12 page
