1,214 research outputs found
Subsampling Algorithms for Semidefinite Programming
We derive a stochastic gradient algorithm for semidefinite optimization using
randomization techniques. The algorithm uses subsampling to reduce the
computational cost of each iteration and the subsampling ratio explicitly
controls granularity, i.e. the tradeoff between cost per iteration and total
number of iterations. Furthermore, the total computational cost is directly
proportional to the complexity (i.e. rank) of the solution. We study numerical
performance on some large-scale problems arising in statistical learning.Comment: Final version, to appear in Stochastic System
Second order accurate distributed eigenvector computation for extremely large matrices
We propose a second-order accurate method to estimate the eigenvectors of
extremely large matrices thereby addressing a problem of relevance to
statisticians working in the analysis of very large datasets. More
specifically, we show that averaging eigenvectors of randomly subsampled
matrices efficiently approximates the true eigenvectors of the original matrix
under certain conditions on the incoherence of the spectral decomposition. This
incoherence assumption is typically milder than those made in matrix completion
and allows eigenvectors to be sparse. We discuss applications to spectral
methods in dimensionality reduction and information retrieval.Comment: Complete proofs are included on averaging performanc
- …
