1,214 research outputs found

    Subsampling Algorithms for Semidefinite Programming

    Full text link
    We derive a stochastic gradient algorithm for semidefinite optimization using randomization techniques. The algorithm uses subsampling to reduce the computational cost of each iteration and the subsampling ratio explicitly controls granularity, i.e. the tradeoff between cost per iteration and total number of iterations. Furthermore, the total computational cost is directly proportional to the complexity (i.e. rank) of the solution. We study numerical performance on some large-scale problems arising in statistical learning.Comment: Final version, to appear in Stochastic System

    Second order accurate distributed eigenvector computation for extremely large matrices

    Full text link
    We propose a second-order accurate method to estimate the eigenvectors of extremely large matrices thereby addressing a problem of relevance to statisticians working in the analysis of very large datasets. More specifically, we show that averaging eigenvectors of randomly subsampled matrices efficiently approximates the true eigenvectors of the original matrix under certain conditions on the incoherence of the spectral decomposition. This incoherence assumption is typically milder than those made in matrix completion and allows eigenvectors to be sparse. We discuss applications to spectral methods in dimensionality reduction and information retrieval.Comment: Complete proofs are included on averaging performanc
    corecore