1,995 research outputs found
Design of a 30 GHz bragg reflector for a Raman FEL
A design of a Bragg reflector for a Raman FEL is described. It is shown that mode conversion occurs whenever the axial wavenumbers of the two modes fulfil the Bragg condition. With a constant ripple of the corrugation it is shown that the reflected radiation also contains higher order modes, assuming that the incident radiation consists only of a TE11 mode. The mode purity can be increased by increasing the length of the reflector at the expense of a smaller reflection bandwidth. A more flexible method is by applying a Hamming window to the corrugation of the reflector. Contributions of other modes to the reflected radiation can in that case be neglected. The reflector will be installed in a Raman laser to be able to compare the amplifier with the oscillator configuration. Therefore some preliminary results are also presented about the start-up of the Raman laser
Studies of a Terawatt X-Ray Free-Electron Laser
The possibility of constructing terawatt (TW) x-ray free-electron lasers
(FELs) has been discussed using novel superconducting helical undulators [5].
In this paper, we consider the conditions necessary for achieving powers in
excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation
code [7]. Steady-state simulations have been conducted using a variety of
undulator and focusing configurations. In particular, strong focusing using
FODO lattices is compared with the natural, weak focusing inherent in helical
undulators. It is found that the most important requirement to reach TW powers
is extreme transverse compression of the electron beam in a strong FODO
lattice. The importance of extreme focusing of the electron beam in the
production of TW power levels means that the undulator is not the prime driver
for a TW FEL, and simulations are also described using planar undulators that
reach near-TW power levels. In addition, TW power levels can be reached using
pure self-amplified spontaneous emission (SASE) or with novel self-seeding
configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure
An X-Ray Regenerative Amplifier Free-Electron Laser Using Diamond Pinhole MIrrors
Free-electron lasers (FELs) have been built ranging in wavelength from
long-wavelength oscillators using partial wave guiding through ultraviolet
through hard x-ray FELs that are either seeded or start from noise (SASE).
Operation in the x-ray spectrum has relied on single-pass SASE due either to
the lack of seed lasers or difficulties in the design of x-ray mirrors.
However, recent developments in the production of diamond crystal Bragg
reflectors point the way to the design of regenerative amplifiers (RAFELs)
which are, essentially, low-Q x-ray free-electron laser oscillators (XFELOs)
that out-couple a large fraction of the optical power on each pass. A RAFEL
using a six-mirror resonator providing out-coupling of 90% or more through a
pinhole in the first downstream mirror is proposed and analyzed using the
MINERVA simulation code for the undulator interaction and the Optics
Propagation Code (OPC) for the resonator. MINERVA/OPC has been used in the past
to simulate infrared FEL oscillators. For the present purpose, OPC has been
modified to treat Bragg reflection from diamond crystal mirrors. The six-mirror
resonator design has been analyzed within the context of the LCLS-II beamline
under construction at the Stanford Linear Accelerator Center and using the HXR
undulator which is also to be installed on the LCLS-II beamline. Simulations
have been run to optimize and characterize the properties of the RAFEL, and
indicate that substantial powers are possible at the fundamental (3.05 keV) and
third harmonic (9.15 keV).Comment: 9 pages, 14 figure
Comparison between a FEL amplifier and oscillator
Previous experiments with the Raman FEL, situated at the Twente University, showed that the output was influenced by the rather strong increase of the current density with time. The field emission diode has been modified to produce a more constant current pulse to simplify the analysis of the measurements. This resulted in a lower current density of the electron beam. With this new diode two set-ups are studied. In the first set-up the laser is still configured as an amplifier whereas in the second set-up the laser configuration is changed into an oscillator using a Bragg reflector with a space-variable corrugation height. For both set-ups we measured the frequency spectrum for specific values of undulator and guide magnetic fields. The relative performance of the amplifier and the oscillator configuration will be presented
Using ultra-short pulses to determine particle size and density distributions
We analyze the time dependent response of strongly scattering media (SSM) to
ultra-short pulses of light. A random walk technique is used to model the
optical scattering of ultra-short pulses of light propagating through media
with random shapes and various packing densities. The pulse spreading was found
to be strongly dependent on the average particle size, particle size
distribution, and the packing fraction. We also show that the intensity as a
function of time-delay can be used to analyze the particle size distribution
and packing fraction of an optically thick sample independently of the presence
of absorption features. Finally, we propose an all new way to measure the shape
of ultra-short pulses that have propagated through a SSM.Comment: 15 pages, 29 figures, accepted for publication in Optics Express will
update with full reference when it is availabl
FEL-Oscillator Simulations with Genesis 1.3
Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the propagation of the light outside the undulator. We present a paraxial Optical Propagation Code (OPC) based on the Spectral Method and Fresnel Diffraction Integral, which in combination with Genesis 1.3 can be used to perform either steady-state or time-dependent FEL oscillator simulations. A flexible scripting interface is used both to describe the optical resonator and to control the codes for propagation and amplification. OPC enables modeling of complex resonator designs that may include hard-edge elements (apertures) or hole-coupled mirrors with arbitrary\ud
shapes. Some capabilities of OPC are illustrated using the FELIX system as an example
Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides
We theoretically investigate the use of Rayleigh surface acoustic waves
(SAWs) for refractive index modulation in optical waveguides consisting of
amorphous dielectrics. Considering low-loss SiN waveguides with a
standard core cross section of 4.40.03 m size, buried 8 m
deep in a SiO cladding we compare surface acoustic wave generation in
various different geometries via a piezo-active, lead zirconate titanate film
placed on top of the surface and driven via an interdigitized transducer (IDT).
Using numerical solutions of the acoustic and optical wave equations, we
determine the strain distribution of the SAW under resonant excitation. From
the overlap of the acoustic strain field with the optical mode field we
calculate and maximize the attainable amplitude of index modulation in the
waveguide. For the example of a near-infrared wavelength of 840 nm, a maximum
shift in relative effective refractive index of 0.7x10 was obtained for
TE polarized light, using an IDT period of 30 - 35 m, a film thickness of
2.5 - 3.5 m, and an IDT voltage of 10 V. For these parameters, the
resonant frequency is in the range 70 - 85 MHz. The maximum shift increases to
1.2x10, with a corresponding resonant frequency of 87 MHz, when the
height of the cladding above the core is reduced to 3 m. The relative
index change is about 300-times higher than in previous work based on
non-resonant proximity piezo-actuation, and the modulation frequency is about
200-times higher. Exploiting the maximum relative index change of
1.210 in a low-loss balanced Mach-Zehnder modulator should allow
full-contrast modulation in devices as short as 120 m (half-wave voltage
length product = 0.24 Vcm).Comment: 19 pages, 8 figure
In-Chain Tunneling Through Charge-Density Wave Nanoconstrictions and Break-Junctions
We have fabricated longitudinal nanoconstrictions in the charge-density wave
conductor (CDW) NbSe using a focused ion beam and using a mechanically
controlled break-junction technique. Conductance peaks are observed below the
TK and TK CDW transitions, which correspond closely
with previous values of the full CDW gaps and
obtained from photo-emission. These results can be explained by assuming
CDW-CDW tunneling in the presence of an energy gap corrugation
comparable to , which eliminates expected peak at
. The nanometer length-scales our experiments imply
indicate that an alternative explanation based on tunneling through
back-to-back CDW-normal junctions is unlikely.Comment: 5 pages, 3 figures, submitted to physical review letter
A 3D Model of the 4GLS VUV-FEL Conceptual Design Including Improved Modelling of the Optical Cavity
The Conceptual Design Report for the 4th Generation Light Source (4GLS) at Daresbury Laboratory in the UK was published in Spring 2006. The proposal includes a low-Q cavity (also called a regenerative amplifier) FEL to generate variably-polarised, temporally-coherent radiation in the photon energy range 3-10eV. A new simulation code has been developed that incorporates the 3D FEL code Genesis 1.3 and which simulates in 3D the optical components and radiation propagation within the non-amplifying sections of an optical cavity*. This code is used to estimate the optimum low-Q cavity design and characterise the output from the 4GLS VUV-FEL
Liner radius fluctuations in a high-gain Cherenkov free-electron laser
Phase shifts in the propagating electromagnetic field of a Cherenkov free-electron laser (CFEL) can affect its gain. The phase velocity of an electromagnetic wave varies, for example, when the lined waveguide is inhomogeneous along its length. In this paper, we study quantitatively the saturated power of a particular CFEL at both weak and strong electron-beam pumping when the inner radius of the liner contains fluctuations along the waveguide. We show that the gain bandwidth of the CFEL is substantially broadened when the CFEL is pumped with a high-current beam. We also show that the design of a CFEL needs to include optimization with respect to sensitivity to liner fluctuations, especially for weakly pumped CFELs, that is, CFELs that use a low-current electron-beam density. This optimization can be relaxed for more strongly pumped CFELs
- …
