254 research outputs found
Long-lived quantum memory with nuclear atomic spins
We propose to store non-classical states of light into the macroscopic
collective nuclear spin ( atoms) of a He vapor, using
metastability exchange collisions. These collisions, commonly used to transfer
orientation from the metastable state to the ground state state of
He, can also transfer quantum correlations. This gives a possible
experimental scheme to map a squeezed vacuum field state onto a nuclear spin
state with very long storage times (hours).Comment: 4 page
BE Ursae Majoris: A detached binary with a unique reprocessing spectrum
New infrared photometry, optical and UV spectrophotometry, and a photographic ephemeris are presented for the detached binary BE UMa. Results show the primary to be a DO white dwarf with an effective temperature of 80,000 + or - 15,000 K and a mass of 0.6 + or - 0.1 solar masses. No evidence is found for variability of the primary. The main sequence secondary star is shown to be of early M spectral type, with a formal range of M1 to M5 being possible. A reflection effect in reprocessed line and continuum radiation is produced by EUV radiation from the primary incident on the secondary atmosphere. It is suggested that the temperature of the reprocessed component of the secondary's atmosphere is in the 5000 to 8500 K range, and that emission lines of decreasing ionization form deeper in the irradiated envelope. Relatively narrow He II and high excitation metal lines are formed from recombination and continuum fluorescence processes
A Global Photometric Analysis of 2MASS Calibration Data
We present results from the application of a global photometric calibration
(GPC) procedure to calibration data from the first 2 years of The Two Micron
All Sky Survey (2MASS). The GPC algorithm uses photometry of both primary
standards and moderately bright `tracer' stars in 35 2MASS calibration fields.
During the first two years of the Survey, each standard was observed on
approximately 50 nights, with about 900 individual measurements. Based on the
photometry of primary standard stars and secondary tracer stars and under the
assumption that the nightly zeropoint drift is linear, GPC ties together all
calibration fields and all survey nights simultaneously, producing a globally
optimized solution. Calibration solutions for the Northern and Southern
hemisphere observatories are found separately, and are tested for global
consistency based on common fields near the celestial equator.
Several results from the GPC are presented, including establishing candidate
secondary standards, monitoring of near-infrared atmospheric extinction
coefficients, and verification of global validity of the standards. The
solution gives long-term averages of the atmospheric extinction coefficients,
A_J=0.096, A_H=0.026, A_{K_s}=0.066 (North) and A_J=0.092, A_H=0.031,
A_{K_s}=0.065 (South), with formal error of 0.001. The residuals show small
seasonal variations, most likely due to changing atmospheric content of water
vapor. Extension of the GPC to approximately 100 field stars in each of the 35
calibration fields yields a catalog of more than two thousand photometric
standards ranging from 10th to 14th magnitude, with photometry that is globally
consistent to .Comment: 19 pages, 10 figures; Submitted to AJ. The table of secondary
standards is available from ftp://nova.astro.umass.edu/pub/nikolaev/ or
ftp://anon-ftp.ipac.caltech.edu/pub/2mass/globalcal
Dispersion of Ripplons in Superfluid 4he
A detailed study of the dispersion law of surface excitations in liquid \hef
at zero temperature is presented, with special emphasis to the short wave
length region. The hybridization mechanism between surface and bulk modes is
discussed on a general basis, investigating the scattering of slow rotons from
the surface. An accurate density functional, accounting for backflow effects,
is then used to determine the dispersion of both bulk and surface excitations.
The numerical results are close to the experimental data obtained on thick
films and explicitly reveal the occurrence of important hybridization effects
between ripplons and rotons.Comment: 23 pages, REVTEX 3.0, 11 figures upon request, UTF-326/9
Collective Modes in a Slab of Interacting Nuclear Matter: The effects of finite range interactions
We consider a slab of nuclear matter and investigate the collective
excitations, which develop in the response function of the system. We introduce
a finite-range realistic interaction among the nucleons, which reproduces the
full G-matrix by a linear combination of gaussian potentials in the various
spin-isospin channels. We then analyze the collective modes of the slab in the
S=T=1 channel: for moderate momenta hard and soft zero-sound modes are found,
which exhaust most of the excitation strength. At variance with the results
obtained with a zero range force, new "massive" excitations are found for the
vector-isovector channel .Comment: 14 pages, TeX, 5 figures (separate uuencoded and tar-compressed
postscript files), Torino preprint DFTT 6/9
Mid-infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS
The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 – W2 ≥ 0.8 (i.e., [3.4]–[4.6] ≥0.8, Vega), which identifies 61.9 ± 5.4 active galactic nucleus (AGN) candidates per deg^2 to a depth of W2 ~ 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 μJy at 4.6 μm, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field
Static Response Function for Longitudinal and Transverse Excitations in Superfluid Helium
The sum rule formalism is used to evaluate rigorous bounds for the density
and current static response functions in superfluid helium at zero temperature.
Both lower and upper bounds are considered. The bounds are expressed in terms
of ground state properties (density and current correlation funtions) and of
the interatomic potential. The results for the density static response
significantly improve the Feynman approximation and turn out to be close to the
experimental (neutron scattering) data. A quantitative prediction for the
transverse current response is given. The role of one-phonon and multi-particle
excitations in the longitudinal and transverse channels is discussed.
(Phys.Rev.B, in press)Comment: 19 pages (plain TeX) and 3 Figures (postscript), UTF-26
Observing the spin of a free electron
Long ago, Bohr, Pauli, and Mott argued that it is not, in principle, possible to measure the spin components of a free electron. One can try to use a Stern-Gerlach type of device, but the finite size of the beam results in an uncertainty of the splitting force that is comparable with the gradient force. The result is that no definite spin measurement can be made. Recently there has been a revival of interest in this problem, and we will present our own analysis and quantum-mechanical wave-packet calculations which suggest that a spin measurement is possible for a careful choice of initial conditions
An HST/WFPC2 Snapshot Survey of 2MASS-Selected Red QSOs
Using simple infrared color selection, 2MASS has found a large number of red,
previously unidentified, radio-quiet QSOs. Although missed by UV/optical
surveys, the 2MASS QSOs have K-band luminosities that are comparable to
"classical" QSOs. This suggests the possible discovery of a previously
predicted large population of dust-obscured radio-quiet QSOs. We present the
results of an imaging survey of 29 2MASS QSOs observed with WFPC2 onboard the
Hubble Space Telescope. I-band images, which benefit from the relative
faintness of the nuclei at optical wavelengths, are used to characterize the
host galaxies, measure the nuclear contribution to the total observed I-band
emission, and to survey the surrounding environments. The 2MASS QSOs are found
to lie in galaxies with a variety of morphologies, luminosities, and dynamical
states, not unlike those hosting radio-quiet PG QSOs. Our analysis suggests
that the extraordinary red colors of the 2MASS QSOs are caused by extinction of
an otherwise typical QSO spectrum due to dust near the nucleus.Comment: 23 pages including 9 figures and 7 tables, accepted for publication
in ApJ, higher resolution HST images at:
http://shapley.as.arizona.edu/~amarble/papers/twomq
From nonwetting to prewetting: the asymptotic behavior of 4He drops on alkali substrates
We investigate the spreading of 4He droplets on alkali surfaces at zero
temperature, within the frame of Finite Range Density Functional theory. The
equilibrium configurations of several 4He_N clusters and their asymptotic trend
with increasing particle number N, which can be traced to the wetting behavior
of the quantum fluid, are examined for nanoscopic droplets. We discuss the size
effects, inferring that the asymptotic properties of large droplets correspond
to those of the prewetting film
- …
