1,062,299 research outputs found
Characterization of Microlensing Planets with Moderately Wide Separations
In future high-cadence microlensing surveys, planets can be detected through
a new channel of an independent event produced by the planet itself. The two
populations of planets to be detected through this channel are wide-separation
planets and free-floating planets. Although they appear as similar short
time-scale events, the two populations of planets are widely different in
nature and thus distinguishing them is important. In this paper, we investigate
the lensing properties of events produced by planets with moderately wide
separations from host stars. We find that the lensing behavior of these events
is well described by the Chang-Refsdal lensing and the shear caused by the
primary not only produces a caustic but also makes the magnification contour
elongated along the primary-planet axis. The elongated magnification contour
implies that the light curves of these planetary events are generally
asymmetric and thus the asymmetry can be used to distinguish the events from
those produced by free-floating planets. The asymmetry can be noticed from the
overall shape of the light curve and thus can hardly be missed unlike the very
short-duration central perturbation caused by the caustic. In addition, the
asymmetry occurs regardless of the event magnification and thus the bound
nature of the planet can be identified for majority of these events. The close
approximation of the lensing light curve to that of the Chang-Refsdal lensing
implies that the analysis of the light curve yields only the information about
the projected separation between the host star and the planet.Comment: 4 pages, 2 figure
High Dimensional Semiparametric Scale-Invariant Principal Component Analysis
We propose a new high dimensional semiparametric principal component analysis
(PCA) method, named Copula Component Analysis (COCA). The semiparametric model
assumes that, after unspecified marginally monotone transformations, the
distributions are multivariate Gaussian. COCA improves upon PCA and sparse PCA
in three aspects: (i) It is robust to modeling assumptions; (ii) It is robust
to outliers and data contamination; (iii) It is scale-invariant and yields more
interpretable results. We prove that the COCA estimators obtain fast estimation
rates and are feature selection consistent when the dimension is nearly
exponentially large relative to the sample size. Careful experiments confirm
that COCA outperforms sparse PCA on both synthetic and real-world datasets.Comment: Accepted in IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPMAI
Magnetic fields of our Galaxy on large and small scales
Magnetic fields have been observed on all scales in our Galaxy, from AU to
kpc. With pulsar dispersion measures and rotation measures, we can directly
measure the magnetic fields in a very large region of the Galactic disk. The
results show that the large-scale magnetic fields are aligned with the spiral
arms but reverse their directions many times from the inner-most arm (Norma) to
the outer arm (Perseus). The Zeeman splitting measurements of masers in HII
regions or star-formation regions not only show the structured fields inside
clouds, but also have a clear pattern in the global Galactic distribution of
all measured clouds which indicates the possible connection of the large-scale
and small-scale magnetic fields.Comment: 9 pages. Invited Talk at IAU Symp.242, 'Astrophysical Masers and
their Environments', Proceedings edited by J. M. Chapman & W. A. Baa
Sparse Median Graphs Estimation in a High Dimensional Semiparametric Model
In this manuscript a unified framework for conducting inference on complex
aggregated data in high dimensional settings is proposed. The data are assumed
to be a collection of multiple non-Gaussian realizations with underlying
undirected graphical structures. Utilizing the concept of median graphs in
summarizing the commonality across these graphical structures, a novel
semiparametric approach to modeling such complex aggregated data is provided
along with robust estimation of the median graph, which is assumed to be
sparse. The estimator is proved to be consistent in graph recovery and an upper
bound on the rate of convergence is given. Experiments on both synthetic and
real datasets are conducted to illustrate the empirical usefulness of the
proposed models and methods
Higgs Boson And Scattering At Colliders
We discuss the Standard-Model Higgs boson production in the channels
, , and W^-W^-H^{--}e^-e^-$ Workshop, Santa Cruz, CA,
Sept. 4--5, 1995. 13 pages, 5 figs, LaTeX; postscript file available via
anonymous ftp at ftp://ucdhep.ucdavis.edu/han/sews/emem_sc.p
- …
