13 research outputs found
Effects of Cinnamon Extracts on Growth Performance and Excreta Urease Activity and Nitrogen Loss in Broilers
Polymer based membranes for propylene/propane separation: CMS, MOF and polymer electrolyte membranes
<abstract>
<p>Propylene/propane separations are generally performed by distillation which are energy intensive and costly to build and operate. There is therefore high interest to develop new separation technologies like membrane modules. In our previous paper, we collected, analyzed and reported data for neat polymers and mixed matrix membranes (MMM) based on flat and hollow fiber configurations for propylene/propane separations. In this second part, we collected the data for carbon molecular sieving (CMS) membranes from polymer pyrolysis reaction and metal-organic framework (MOF) membranes from different fabrication methods, as well as data on facilitated transport membrane-polymer electrolyte membranes (PEM). CMS membranes show great potential for C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> separation with an optimum pyrolysis temperature around 500–600 ℃. However, physical aging is a concern as the micro-pores shrink over time leading to lower permeability. The performance of MOF membranes are above the 2020 upper bound of polymer-based membranes, but have limited commercial application because they are fragile and difficult to produce. Finally, facilitated transport membranes show excellent propylene/propane separation performance, but are less stable compared to commercial polymeric membranes limiting their long-term operation and practical applications. As usual, there is no universal membrane and the selection must be made based on the operating conditions.</p>
</abstract></jats:p
Effects of different pig houses on indoor environmental parameters and growth performance of growing and finishing pigs
Author response for "Antidepressant‐like effect of flaxseed in rats exposed to chronic unpredictable stress"
JUNO sensitivity to low energy atmospheric neutrino spectra
AbstractAtmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric
ν
e
and
ν
μ
fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3” PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since
ν
e
and
ν
μ
interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region.</jats:p
Mass testing and characterization of 20-inch PMTs for JUNO
AbstractMain goal of the JUNO experiment is to determine the neutrino mass ordering using a 20 kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3% at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK).</jats:p
Radioactivity control strategy for the JUNO detector
Abstract
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV.</jats:p
Calibration strategy of the JUNO experiment
Abstract
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination.</jats:p
The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS
AbstractThe OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of
10
-
16
g/g
of
238
U
and
232
Th
requires a large (
∼
20
m
3
) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup.</jats:p
Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment
Abstract
We study damping signatures at the Jiangmen Underground Neutrino Observatory (JUNO), a medium-baseline reactor neutrino oscillation experiment. These damping signatures are motivated by various new physics models, including quantum decoherence, ν3 decay, neutrino absorption, and wave packet decoherence. The phenomenological effects of these models can be characterized by exponential damping factors at the probability level. We assess how well JUNO can constrain these damping parameters and how to disentangle these different damping signatures at JUNO. Compared to current experimental limits, JUNO can significantly improve the limits on τ3/m3 in the ν3 decay model, the width of the neutrino wave packet σx, and the intrinsic relative dispersion of neutrino momentum σrel.</jats:p
