1,546 research outputs found

    The First Neptune Analog or Super-Earth with Neptune-like Orbit: MOA-2013-BLG-605Lb

    Full text link
    We present the discovery of the first Neptune analog exoplanet or super-Earth with Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9149\sim 14 times the expected position of the snow-line, asnowa_{\rm snow}, which is similar to Neptune's separation of 11asnow 11\,a_{\rm snow} from the Sun. The planet/host-star mass ratio is q=(3.6±0.7)×104q=(3.6\pm0.7)\times 10^{-4} and the projected separation normalized by the Einstein radius is s=2.39±0.05s=2.39\pm0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy". The three models have (i) a Neptune-mass planet with a mass of Mp=217+6MEarthM_{\rm p}=21_{-7}^{+6} M_{Earth} orbiting a low-mass M-dwarf with a mass of Mh=0.190.06+0.05MM_{\rm h}=0.19_{-0.06}^{+0.05} M_\odot, (ii) a mini-Neptune with Mp=7.91.2+1.8MEarthM_{\rm p}= 7.9_{-1.2}^{+1.8} M_{Earth} orbiting a brown dwarf host with Mh=0.0680.011+0.019MM_{\rm h}=0.068_{-0.011}^{+0.019} M_\odot and (iii) a super-Earth with Mp=3.20.3+0.5MEarthM_{\rm p}= 3.2_{-0.3}^{+0.5} M_{Earth} orbiting a low-mass brown dwarf host with Mh=0.0250.004+0.005MM_{\rm h}=0.025_{-0.004}^{+0.005} M_\odot which is slightly favored. The 3-D planet-host separations are 4.61.2+4.7_{-1.2}^{+4.7} AU, 2.10.2+1.0_{-0.2}^{+1.0} AU and 0.940.02+0.67_{-0.02}^{+0.67} AU, which are 8.91.4+10.58.9_{-1.4}^{+10.5}, 121+712_{-1}^{+7} or 141+1114_{-1}^{+11} times larger than asnowa_{\rm snow} for these models, respectively. The Keck AO observation confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbit are common. So processes similar to the one that formed Neptune in our own Solar System or cold super-Earth may be common in other solar systems.Comment: 54 pages, 10 figures, 13 tables, Accepted for publication in the Ap

    OGLE-2013-BLG-0102LA,B: Microlensing binary with components at star/brown-dwarf and brown-dwarf/planet boundaries

    Get PDF
    We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification Amax1.5A_{\rm max}\sim 1.5. It is found that the event was produced by a binary lens with a mass ratio between the components of q=0.13q = 0.13 and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are M1=0.096±0.013 MM_{1} = 0.096 \pm 0.013~M_{\odot} and M2=0.012±0.002 MM_{2} = 0.012 \pm 0.002~M_{\odot}, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is 3.04±0.31 kpc3.04 \pm 0.31~{\rm kpc} and the projected separation between the lens components is 0.80±0.08 AU0.80 \pm 0.08~{\rm AU}.Comment: 6 figures, 2 tables, ApJ submitte

    OGLE-2016-BLG-1469L: Microlensing Binary Composed of Brown Dwarfs

    Full text link
    We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection of both finite-source and microlens-parallax effects, we are able to measure both the masses M10.05 MM_1\sim 0.05\ M_\odot, M20.01 MM_2\sim 0.01\ M_\odot, and distance DL4.5D_{\rm L} \sim 4.5 kpc, as well as the projected separation a0.33a_\perp \sim 0.33 au. This is the third brown-dwarf binary detected using the microlensing method, demonstrating the usefulness of microlensing in detecting field brown-dwarf binaries with separations less than 1 au.Comment: 8 pages, 8 figure

    A Likely Detection of a Two-Planet System in a Low Magnification Microlensing Event

    Full text link
    We report on the analysis of a microlensing event OGLE-2014-BLG-1722 that showed two distinct short term anomalies. The best fit model to the observed light curves shows that the two anomalies are explained with two planetary mass ratio companions to the primary lens. Although a binary source model is also able to explain the second anomaly, it is marginally ruled out by 3.1 σ\sigma. The 2-planet model indicates that the first anomaly was caused by planet "b" with a mass ratio of q=(4.50.6+0.7)×104q = (4.5_{-0.6}^{+0.7}) \times 10^{-4} and projected separation in unit of the Einstein radius, s=0.753±0.004s = 0.753 \pm 0.004. The second anomaly reveals planet "c" with a mass ratio of q2=(7.01.7+2.3)×104q_{2} = (7.0_{-1.7}^{+2.3}) \times 10^{-4} with Δχ2170\Delta \chi^{2} \sim 170 compared to the single planet model. Its separation has a so-called close-wide degeneracy. We estimated the physical parameters of the lens system from Bayesian analysis. This gives that the masses of planet b and c are mb=5633+51Mm_{\rm b} = 56_{-33}^{+51}\,M_{\oplus} and mc=8551+86Mm_{\rm c} = 85_{-51}^{+86}\,M_{\oplus}, respectively, and they orbit a late type star with a mass of Mhost=0.400.24+0.36MM_{\rm host} = 0.40_{-0.24}^{+0.36}\,M_{\odot} located at DL=6.41.8+1.3kpcD_{\rm L} = 6.4_{-1.8}^{+1.3}\,\rm kpc from us. If the 2-planet model is true, this is the third multiple planet system detected by using the microlensing method, and the first multiple planet system detected in the low magnification events, which are dominant in the microlensing survey data. The occurrence rate of multiple cold gas giant systems is estimated using the two such detections and a simple extrapolation of the survey sensitivity of 6 year MOA microlensing survey (Suzuki et al. 2016) combined with the 4 year μ\muFUN detection efficiency (Gould et al. 2010). It is estimated that 6±2%6 \pm 2\,\% of stars host two cold giant planets.Comment: Submitted to AA

    OGLE-2012-BLG-0455/MOA-2012-BLG-206: Microlensing event with ambiguity in planetary interpretations caused by incomplete coverage of planetary signal

    Get PDF
    Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interpreting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event (Amax400)(A_{\rm max}\sim400) exhibits very strong deviation from a point-lens model with Δχ24000\Delta\chi^{2}\gtrsim4000 for data sets with a total number of measurement 6963. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While the two-fold (so-called "close/wide") degeneracy is well-understood, the degeneracy between the radically different solutions is not previously known. The model light curves of this degeneracy differ substantially in the parts that were not covered by observation, indicating that the degeneracy is caused by the incomplete coverage of the perturbation. It is expected that the frequency of the degeneracy introduced in this work will be greatly reduced with the improvement of the current lensing survey and follow-up experiments and the advent of new surveys.Comment: 5 pages, 3 figures, ApJ accepte

    Centrality categorization for R_{p(d)+A} in high-energy collisions

    Full text link
    High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Evidence for e+eγχc1,2e^+e^-\to\gamma\chi_{c1, 2} at center-of-mass energies from 4.009 to 4.360 GeV

    Full text link
    Using data samples collected at center-of-mass energies of s\sqrt{s} = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process e+eγχcJe^+e^-\to\gamma\chi_{cJ} (J=0,1,2)(J = 0, 1, 2) and find evidence for e+eγχc1e^+e^-\to\gamma\chi_{c1} and e+eγχc2e^+e^-\to\gamma\chi_{c2} with statistical significances of 3.0σ\sigma and 3.4σ\sigma, respectively. The Born cross sections σB(e+eγχcJ)\sigma^{B}(e^+e^-\to\gamma\chi_{cJ}), as well as their upper limits at the 90% confidence level are determined at each center-of-mass energy.Comment: 8 pages, 7 figures, 3 table

    Azimuthal anisotropy of pi^0 and eta mesons in Au+Au collisions at sqrt(s_NN)=200 GeV

    Full text link
    The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are found to be consistent between the two meson species over the measured p_T range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is systematically larger in central collisions, which may reflect the combined effects of fluctuations in the initial collision geometry and finite viscosity in the evolving medium.Comment: 384 authors, 71 institutions, 11 pages, 9 figures, and 2 tables. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Azimuthally anisotropic emission of low-momentum direct photons in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of 0.4<pT<4.00.4<p_{T}<4.0 GeV/cc. At low pTp_T the second-order coefficients, v2v_2, are similar to the ones observed in hadrons. Third order coefficients, v3v_3, are nonzero and almost independent of centrality. These new results on v2v_2 and v3v_3, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.Comment: 552 authors, 15 pages, 9 figures, 3 tables, 2007 and 2010 data. v2 is version accepted for publication by Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Transverse-energy distributions at midrapidity in pp++pp, dd++Au, and Au++Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4--200~GeV and implications for particle-production models

    Full text link
    Measurements of the midrapidity transverse energy distribution, d\Et/d\eta, are presented for pp++pp, dd++Au, and Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV and additionally for Au++Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4 and 130 GeV. The d\Et/d\eta distributions are first compared with the number of nucleon participants NpartN_{\rm part}, number of binary collisions NcollN_{\rm coll}, and number of constituent-quark participants NqpN_{qp} calculated from a Glauber model based on the nuclear geometry. For Au++Au, \mean{d\Et/d\eta}/N_{\rm part} increases with NpartN_{\rm part}, while \mean{d\Et/d\eta}/N_{qp} is approximately constant for all three energies. This indicates that the two component ansatz, dET/dη(1x)Npart/2+xNcolldE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}, which has been used to represent ETE_T distributions, is simply a proxy for NqpN_{qp}, and that the NcollN_{\rm coll} term does not represent a hard-scattering component in ETE_T distributions. The dET/dηdE_{T}/d\eta distributions of Au++Au and dd++Au are then calculated from the measured pp++pp ETE_T distribution using two models that both reproduce the Au++Au data. However, while the number-of-constituent-quark-participant model agrees well with the dd++Au data, the additive-quark model does not.Comment: 391 authors, 24 pages, 19 figures, and 15 Tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore