1,546 research outputs found
The First Neptune Analog or Super-Earth with Neptune-like Orbit: MOA-2013-BLG-605Lb
We present the discovery of the first Neptune analog exoplanet or super-Earth
with Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to
that of Neptune or a super-Earth and it orbits at times the expected
position of the snow-line, , which is similar to Neptune's
separation of from the Sun. The planet/host-star mass ratio
is and the projected separation normalized by the
Einstein radius is . There are three degenerate physical
solutions and two of these are due to a new type of degeneracy in the
microlensing parallax parameters, which we designate "the wide degeneracy". The
three models have (i) a Neptune-mass planet with a mass of orbiting a low-mass M-dwarf with a mass of , (ii) a mini-Neptune with orbiting a brown dwarf host with and (iii) a super-Earth with orbiting a low-mass brown dwarf host with which is slightly favored. The 3-D
planet-host separations are 4.6 AU, 2.1 AU and
0.94 AU, which are , or
times larger than for these models,
respectively. The Keck AO observation confirm that the lens is faint. This
discovery suggests that low-mass planets with Neptune-like orbit are common. So
processes similar to the one that formed Neptune in our own Solar System or
cold super-Earth may be common in other solar systems.Comment: 54 pages, 10 figures, 13 tables, Accepted for publication in the Ap
OGLE-2013-BLG-0102LA,B: Microlensing binary with components at star/brown-dwarf and brown-dwarf/planet boundaries
We present the analysis of the gravitational microlensing event
OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong
short-term anomaly superposed on a smoothly varying lensing curve with a
moderate magnification . It is found that the event was
produced by a binary lens with a mass ratio between the components of and the anomaly was caused by the passage of the source trajectory over a
caustic located away from the barycenter of the binary. From the analysis of
the effects on the light curve due to the finite size of the source and the
parallactic motion of the Earth, the physical parameters of the lens system are
determined. The measured masses of the lens components are and , which correspond to
near the hydrogen-burning and deuterium-burning mass limits, respectively. The
distance to the lens is and the projected separation
between the lens components is .Comment: 6 figures, 2 tables, ApJ submitte
OGLE-2016-BLG-1469L: Microlensing Binary Composed of Brown Dwarfs
We report the discovery of a binary composed of two brown dwarfs, based on
the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection
of both finite-source and microlens-parallax effects, we are able to measure
both the masses , , and distance
kpc, as well as the projected separation au. This is the third brown-dwarf binary detected using the microlensing
method, demonstrating the usefulness of microlensing in detecting field
brown-dwarf binaries with separations less than 1 au.Comment: 8 pages, 8 figure
A Likely Detection of a Two-Planet System in a Low Magnification Microlensing Event
We report on the analysis of a microlensing event OGLE-2014-BLG-1722 that
showed two distinct short term anomalies. The best fit model to the observed
light curves shows that the two anomalies are explained with two planetary mass
ratio companions to the primary lens. Although a binary source model is also
able to explain the second anomaly, it is marginally ruled out by 3.1 .
The 2-planet model indicates that the first anomaly was caused by planet "b"
with a mass ratio of and projected
separation in unit of the Einstein radius, . The second
anomaly reveals planet "c" with a mass ratio of with compared to the single planet
model. Its separation has a so-called close-wide degeneracy. We estimated the
physical parameters of the lens system from Bayesian analysis. This gives that
the masses of planet b and c are and
, respectively, and they orbit a late
type star with a mass of
located at from us. If the 2-planet
model is true, this is the third multiple planet system detected by using the
microlensing method, and the first multiple planet system detected in the low
magnification events, which are dominant in the microlensing survey data. The
occurrence rate of multiple cold gas giant systems is estimated using the two
such detections and a simple extrapolation of the survey sensitivity of 6 year
MOA microlensing survey (Suzuki et al. 2016) combined with the 4 year FUN
detection efficiency (Gould et al. 2010). It is estimated that of
stars host two cold giant planets.Comment: Submitted to AA
OGLE-2012-BLG-0455/MOA-2012-BLG-206: Microlensing event with ambiguity in planetary interpretations caused by incomplete coverage of planetary signal
Characterizing a microlensing planet is done from modeling an observed
lensing light curve. In this process, it is often confronted that solutions of
different lensing parameters result in similar light curves, causing
difficulties in uniquely interpreting the lens system, and thus understanding
the causes of different types of degeneracy is important. In this work, we show
that incomplete coverage of a planetary perturbation can result in degenerate
solutions even for events where the planetary signal is detected with a high
level of statistical significance. We demonstrate the degeneracy for an
actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this
high-magnification event exhibits very strong deviation
from a point-lens model with for data sets with a
total number of measurement 6963. From detailed modeling of the light curve, we
find that the deviation can be explained by four distinct solutions, i.e., two
very different sets of solutions, each with a two-fold degeneracy. While the
two-fold (so-called "close/wide") degeneracy is well-understood, the degeneracy
between the radically different solutions is not previously known. The model
light curves of this degeneracy differ substantially in the parts that were not
covered by observation, indicating that the degeneracy is caused by the
incomplete coverage of the perturbation. It is expected that the frequency of
the degeneracy introduced in this work will be greatly reduced with the
improvement of the current lensing survey and follow-up experiments and the
advent of new surveys.Comment: 5 pages, 3 figures, ApJ accepte
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Evidence for at center-of-mass energies from 4.009 to 4.360 GeV
Using data samples collected at center-of-mass energies of =
4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the
BEPCII collider, we perform a search for the process
and find evidence for and
with statistical significances of 3.0 and
3.4, respectively. The Born cross sections
, as well as their upper limits at the
90% confidence level are determined at each center-of-mass energy.Comment: 8 pages, 7 figures, 3 table
Azimuthal anisotropy of pi^0 and eta mesons in Au+Au collisions at sqrt(s_NN)=200 GeV
The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are
measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse
momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are
found to be consistent between the two meson species over the measured p_T
range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T
for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of
underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is
systematically larger in central collisions, which may reflect the combined
effects of fluctuations in the initial collision geometry and finite viscosity
in the evolving medium.Comment: 384 authors, 71 institutions, 11 pages, 9 figures, and 2 tables.
Submitted to Physical Review C. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Azimuthally anisotropic emission of low-momentum direct photons in AuAu collisions at GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd
and 3rd order Fourier coefficients of the azimuthal distributions of direct
photons emitted at midrapidity in AuAu collisions at
GeV for various collision centralities. Combining two different analysis
techniques, results were obtained in the transverse momentum range of
GeV/. At low the second-order coefficients, , are
similar to the ones observed in hadrons. Third order coefficients, , are
nonzero and almost independent of centrality. These new results on and
, combined with previously published results on yields, are compared to
model calculations that provide yields and asymmetries in the same framework.
Those models are challenged to explain simultaneously the observed large yield
and large azimuthal anisotropies.Comment: 552 authors, 15 pages, 9 figures, 3 tables, 2007 and 2010 data. v2 is
version accepted for publication by Phys. Rev. C. Plain text data tables for
the points plotted in figures for this and previous PHENIX publications are
(or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Transverse-energy distributions at midrapidity in , Au, and AuAu collisions at --200~GeV and implications for particle-production models
Measurements of the midrapidity transverse energy distribution, d\Et/d\eta,
are presented for , Au, and AuAu collisions at
GeV and additionally for AuAu collisions at
and 130 GeV. The d\Et/d\eta distributions are first
compared with the number of nucleon participants , number of
binary collisions , and number of constituent-quark participants
calculated from a Glauber model based on the nuclear geometry. For
AuAu, \mean{d\Et/d\eta}/N_{\rm part} increases with , while
\mean{d\Et/d\eta}/N_{qp} is approximately constant for all three energies.
This indicates that the two component ansatz, , which has been used to represent
distributions, is simply a proxy for , and that the term
does not represent a hard-scattering component in distributions. The
distributions of AuAu and Au are then calculated from
the measured distribution using two models that both reproduce
the AuAu data. However, while the number-of-constituent-quark-participant
model agrees well with the Au data, the additive-quark model does not.Comment: 391 authors, 24 pages, 19 figures, and 15 Tables. Submitted to Phys.
Rev. C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
