1,427 research outputs found

    Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade

    Get PDF
    Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited version of an article submitted for publication in Nuclear Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Studies of the non-axisymmetric plasma boundary displacement in JET in presence of externally applied magnetic field

    Get PDF
    Non-axisymmetric plasma boundary displacement is caused by the application of the external magnetic field with low toroidal mode number. Such displacement affects edge stability, power load on the first wall and could affect efficiency of the ICRH coupling in ITER. Studies of the displacement are presented for JET tokamak focusing on the interaction between error field correction coils (EFCCs) and shape control system. First results are shown on the direct measurement of the plasma boundary displacement at different toroidal locations. Both qualitative and quantitative studies of the plasma boundary displacement caused by interaction between EFCCs and shape control system are performed for different toroidal phases of the external field. Axisymmetric plasma boundary displacement caused by the EFCC/shape control system interaction is seen for certain phase values of the external field. The value of axisymmetric plasma boundary displacement caused by interaction can be comparable to the non-axisymmetric plasma boundary displacement value produced by EFCCs

    Toroidal modelling of plasma response and RMP field penetration

    Get PDF
    The penetration dynamics of the resonant magnetic perturbation (RMP) field is sim- ulated in the full toroidal geometry, under realistic plasma conditions in MAST experiments. The physics associated with several aspects of the RMP penetration - the plasma response and rotational screening, the resonant and non-resonant torques and the toroidal momentum balance - are highlighted. In particular, the plasma response is found to significantly amplify the non-resonant component of the RMP field for some of the MAST plasmas. A fast rotating plasma, in response to static external magnetic fields, experiences a more distributed electro- magnetic torque due to the resonance with continuum waves in the plasma. At fast plasma flow (such as for the MAST plasma), the electromagnetic torque is normally dominant over the neoclassical toroidal viscous (NTV) torque. However, at sufficiently slow plasma flow, the NTV torque can play a significant role in the toroidal momentum balance, thanks to the precession drift resonance enhanced, so called superbanana plateau regime

    Centrifugal separation and equilibration dynamics in an electron-antiproton plasma

    Full text link
    Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments

    Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    Get PDF
    This article reports on a search for dark matterpair production in association with bottom or top quarks in20.3fb−1ofppcollisions collected at√s=8TeVbytheATLAS detector at the LHC. Events with large missing trans-verse momentum are selected when produced in associationwith high-momentum jets of which one or more are identifiedas jets containingb-quarks. Final states with top quarks areselected by requiring a high jet multiplicity and in some casesa single lepton. The data are found to be consistent with theStandard Model expectations and limits are set on the massscale of effective field theories that describe scalar and tensorinteractions between dark matter and Standard Model par-ticles. Limits on the dark-matter–nucleon cross-section forspin-independent and spin-dependent interactions are alsoprovided. These limits are particularly strong for low-massdark matter. Using a simplified model, constraints are set onthe mass of dark matter and of a coloured mediator suitableto explain a possible signal of annihilating dark matter

    First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

    Get PDF
    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10−46 cm2 at a WIMP mass of 33 GeV=c2. We find that the LUX data are in disagreement with lowmass WIMP signal interpretations of the results from several recent direct detection experiments

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 8 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three leptons and missing transverse momentum is presented. The analysis is based on 20.3 fb−1 of s√ = 8 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations and limits are set in R-parity-conserving phenomenological Minimal Supersymmetric Standard Models and in simplified supersymmetric models, significantly extending previous results. For simplified supersymmetric models of direct chargino (χ˜±1) and next-to-lightest neutralino (χ˜02) production with decays to lightest neutralino (χ˜01) via either all three generations of sleptons, staus only, gauge bosons, or Higgs bosons, (χ˜±1) and (χ˜02) masses are excluded up to 700 GeV, 380 GeV, 345 GeV, or 148 GeV respectively, for a massless (χ˜01

    Comparative efficacy of indacaterol in chronic obstructive pulmonary disease

    Get PDF
    Long-acting bronchodilators have been shown to improve multiple clinical outcomes in chronic obstructive pulmonary disease (COPD) including lung function, symptoms, dyspnea, quality of life, and exacerbations. Indacaterol is a novel, inhaled, long-acting β2-agonist providing 24-hour bronchodilation with once-daily dosing. It is currently approved for the maintenance treatment of COPD to be administered as 150 or 300 μg once-daily doses as licensed in many countries and 75 μg as licensed in the US by means of a single-dose dry powder inhaler. The data from clinical development support a favorable safety and tolerability profile within the β2-agonist drug class, with no relevant issues identified. Current evidence indicates that indacaterol is suitable for use as first-line monotherapy in COPD patients with moderate disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage II) and beyond that do not require an inhaled corticosteroid (ICS) as per GOLD guidelines, or in combination with an ICS in severe or very severe patients with repeated exacerbations. Data from trials with the novel once-daily β2-agonist, indacaterol, indicate superior bronchodilation and clinical efficacy over twice-daily long-acting β2-agonists and at least equipotent bronchodilation as once-daily tiotropium. Bronchodilators are central in the symptomatic management of COPD. It is likely that once-daily dosing of a bronchodilator would be a significant convenience and probably a compliance-enhancing advantage, leading to improved overall clinical outcomes in patients with COPD

    Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s = 13 TeV

    Get PDF
    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at √s = 13 TeV in 2015. Using a large sample of J/ψ→μμ and Z→μμ decays from 3.2 fb−1 of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to 99% over most of the covered phase space (|η| 2.2, the pT resolution for muons from Z→μμ decays is 2.9 % while the precision of the momentum scale for low-pT muons from J/ψ→μμ decays is about 0.2%

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
    corecore