39,906 research outputs found

    RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations

    Get PDF
    Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the MS\overline{\rm MS} scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is 483×9648^3\times96 and the inverse spacing 1/a=1.730(4) GeV1/a = 1.730(4) {\rm~GeV}.Comment: Minor changes and updates of Figure 10 and 15 to be more clea

    Meson Mass Decomposition

    Get PDF
    Hadron masses can be decomposed as a sum of components which are defined through hadronic matrix elements of QCD operators. The components consist of the quark mass term, the quark energy term, the glue energy term and the trace anomaly term. We calculate these components of mesons with lattice QCD for the first time. The calculation is carried out with overlap fermion on 2+12+1 flavor domain-wall fermion gauge configurations. We confirm that 50%\sim 50\% of the light pion mass comes from the quark mass and 10%\sim 10\% comes from the quark energy, whereas, the contributions are found to be the other way around for the ρ\rho mass. The combined glue components contribute 4050%\sim 40 - 50\% for both mesons. It is interesting to observe that the quark mass contribution to the mass of the vector meson is almost linear in quark mass over a large quark mass region below the charm quark mass. For heavy mesons, the quark mass term dominates the masses, while the contribution from the glue components is about 400500400\sim500 MeV for the heavy pseudoscalar and vector mesons. The charmonium hyperfine splitting is found to be dominated by the quark energy term which is consistent with the quark potential model.Comment: 7 Pages, 4 figures, contribution to the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, Columbia University, New York, NY, US

    A Lattice Study of (Dˉ1D)±(\bar{D}_1 D^{*})^\pm Near-threshold Scattering

    Full text link
    In this exploratory lattice study, low-energy near threshold scattering of the (Dˉ1D)±(\bar{D}_1 D^{*})^\pm meson system is analyzed using lattice QCD with Nf=2N_f=2 twisted mass fermion configurations. Both s-wave (JP=0J^P=0^-) and p-wave (JP=1+J^P=1^+) channels are investigated. It is found that the interaction between the two charmed mesons is attractive near the threshold in both channels. This calculation provides some hints in the searching of resonances or bound states around the threshold of (Dˉ1D)±(\bar{D}_1 D^{*})^\pm system.Comment: 20 pages, 15 figures, matches the version on PR

    Non-perturbative renormalization of overlap quark bilinears on 2+1-flavor domain wall fermion configurations

    Get PDF
    We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.Comment: 26 pages, 17 figures. More discussions on O(4) breaking effects, and on the perturbative running and a^2p^2 extrapolation of Zs. A subsection for the calculation of the step scaling function of quark mass is added. References added. Version to appear in PR

    Spectrum and Bethe-Salpeter amplitudes of Ω\Omega baryons from lattice QCD

    Full text link
    The Ω\Omega baryons with JP=3/2±,1/2±J^P=3/2^\pm, 1/2^\pm are studied on the lattice in the quenched approximation. Their mass levels are ordered as M3/2+<M3/2M1/2<M1/2+M_{3/2^+}<M_{3/2^-}\approx M_{1/2^-}<M_{1/2^+}, as is expected from the constituent quark model. The mass values are also close to those of the four Ω\Omega states observed in experiments, respectively. We calculate the Bethe-Salpeter amplitudes of Ω(3/2+)\Omega(3/2^+) and Ω(1/2+)\Omega(1/2^+) and find there is a radial node for the Ω(1/2+)\Omega(1/2^+) Bethe-Salpeter amplitude, which may imply that Ω(1/2+)\Omega(1/2^+) is an orbital excitation of Ω\Omega baryons as a member of the (D,LNP)=(70,02+)(D,L_N^P)=(70,0_2^+) supermultiplet in the SU(6)O(3)SU(6)\bigotimes O(3) quark model description. Our results are helpful for identifying the quantum number of experimentally observed Ω\Omega states.Comment: 7 pages, 5 figures, submitted to Chinese Physics

    A way to measure the water quality of the LHAASO-WCDA with cosmic muon signals

    Full text link
    The Large High Altitude Air Shower Observatory (LHAASO) is to be built at Daocheng, Sichuan Province, China. As one of the major components of the LHAASO project, a Water Cherenkov Detector Array (WCDA), with an area of 78,000~m2\rm m^{2}, contains 350,000~tons of purified water. The water transparency and its stability are critical for successful long-term operation of this project. To gain full knowledge of the water Cherenkov technique and investigate the engineering issues, a 9-cell detector array has been built at the Yangbajing site, Tibet, China. With the help of the distribution of single cosmic muon signals, the monitoring and measurement of water transparency are studied. The results show that a precision of several percent can be obtained for the attenuation length measurement, which satisfies the requirements of the experiment. In the near future, this method could be applied to the LHAASO-WCDA project

    Two Photon Decays of ηc\eta_c from Lattice QCD

    Full text link
    We present an exploratory lattice study for the two-photon decay of ηc\eta_c using Nf=2N_f=2 twisted mass lattice QCD gauge configurations generated by the European Twisted Mass Collaboration. Two different lattice spacings of a=0.067a=0.067fm and a=0.085a=0.085fm are used in the study, both of which are of physical size of 2fmfm. The decay widths are found to be 1.025(5)1.025(5)KeV for the coarser lattice and 1.062(5)1.062(5)KeV for the finer lattice respectively where the errors are purely statistical. A naive extrapolation towards the continuum limit yields Γ1.122(14)\Gamma\simeq 1.122(14)KeV which is smaller than the previous quenched result and most of the current experimental results. Possible reasons are discussed.Comment: 13 pages, 7 figures; matches the published versio

    Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-Line Region

    Full text link
    This paper reports results of the third-year campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs) between 2014-2015. Ten new targets were selected from quasar sample of Sloan Digital Sky Survey (SDSS), which are generally more luminous than the SEAMBH candidates in last two years. Hβ\beta lags (τHβ\tau_{_{\rm H\beta}}) in five of the 10 quasars have been successfully measured in this monitoring season. We find that the lags are generally shorter, by large factors, than those of objects with same optical luminosity, in light of the well-known RHβL5100R_{_{\rm H\beta}}-L_{5100} relation. The five quasars have dimensionless accretion rates of M˙=10103\dot{\mathscr{M}}=10-10^3. Combining measurements of the previous SEAMBHs, we find that the reduction of Hβ\beta lags tightly depends on accretion rates, τHβ/τRLM˙0.42\tau_{_{\rm H\beta}}/\tau_{_{R-L}}\propto\dot{\mathscr{M}}^{-0.42}, where τRL\tau_{_{R-L}} is the Hβ\beta lag from the normal RHβL5100R_{_{\rm H\beta}}-L_{5100} relation. Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line region: RHβ=α144β1min[1,(M˙/M˙c)γ1]R_{_{\rm H\beta}}=\alpha_1\ell_{44}^{\beta_1}\,\min\left[1,\left(\dot{\mathscr{M}}/\dot{\mathscr{M}}_c\right)^{-\gamma_1}\right], where 44=L5100/1044erg s1\ell_{44}=L_{5100}/10^{44}\,\rm erg~s^{-1} is 5100 \AA\ continuum luminosity, and coefficients of α1=(29.62.8+2.7)\alpha_1=(29.6_{-2.8}^{+2.7}) lt-d, β1=0.560.03+0.03\beta_1=0.56_{-0.03}^{+0.03}, γ1=0.520.16+0.33\gamma_1=0.52_{-0.16}^{+0.33} and M˙c=11.196.22+2.29\dot{\mathscr{M}}_c=11.19_{-6.22}^{+2.29}. This relation is applicable to AGNs over a wide range of accretion rates, from 10310^{-3} to 10310^3. Implications of this new relation are briefly discussed.Comment: 15 pages, 9 figures, 5 table, accepted for publication in The Astrophysical Journa

    Coherency in Neutrino-Nucleus Elastic Scattering

    Full text link
    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter (α\alpha) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold and target nucleus are studied. The ranges of α\alpha which can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in α\alpha would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to α\alpha>0.95 are derived.Comment: 5 pages, 4 figures, 3 tables. V2 -- Published Versio

    The Green Bank Ammonia Survey (GAS): First Results of NH3 mapping the Gould Belt

    Full text link
    We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with AV7A_V \gtrsim 7 mag visible from the northern hemisphere in emission from NH3_3 and other key molecular tracers. This first release includes the data for four regions in Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH3_3 emission to dust continuum emission from Herschel, and find that the two tracers correspond closely. NH3_3 is present in over 60\% of lines-of-sight with AV7A_V \gtrsim 7 mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH3_3 is detected toward ~ 40\% of lines-of-sight with AV7A_V \gtrsim 7 mag. Moreover, we find that the NH3_3 emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH3_3 column densities through forward modeling of the hyperfine structure of the NH3_3 (1,1) and (2,2) lines. We show that the NH3_3 velocity dispersion, σv{\sigma}_v, and gas kinetic temperature, TKT_K, vary systematically between the regions included in this release, with an increase in both the mean value and spread of σv{\sigma}_v and TKT_K with increasing star formation activity. The data presented in this paper are publicly available.Comment: 33 pages, 27 figures, accepted to ApJS. Datasets are publicly available: https://dataverse.harvard.edu/dataverse/GAS_DR
    corecore