9 research outputs found

    Author response for "Influenza vaccination and prognosis of COVID ‐19 in hospitalized patients with diabetes: Results from the CORONADO study"

    No full text

    Location and allocation: Inequity of access to liver transplantation for patients with severe acute‐on‐chronic liver failure in Europe

    Full text link

    Correction to: Characteristics and prognosis of bloodstream infection in patients with COVID‑19 admitted in the ICU: an ancillary study of the COVID‑ICU study

    No full text

    Benefits and risks of noninvasive oxygenation strategy in COVID-19: a multicenter, prospective cohort study (COVID-ICU) in 137 hospitals

    No full text
    Abstract Rational To evaluate the respective impact of standard oxygen, high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) on oxygenation failure rate and mortality in COVID-19 patients admitted to intensive care units (ICUs). Methods Multicenter, prospective cohort study (COVID-ICU) in 137 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, oxygenation failure, and survival data were collected. Oxygenation failure was defined as either intubation or death in the ICU without intubation. Variables independently associated with oxygenation failure and Day-90 mortality were assessed using multivariate logistic regression. Results From February 25 to May 4, 2020, 4754 patients were admitted in ICU. Of these, 1491 patients were not intubated on the day of ICU admission and received standard oxygen therapy (51%), HFNC (38%), or NIV (11%) (P &lt; 0.001). Oxygenation failure occurred in 739 (50%) patients (678 intubation and 61 death). For standard oxygen, HFNC, and NIV, oxygenation failure rate was 49%, 48%, and 60% (P &lt; 0.001). By multivariate analysis, HFNC (odds ratio [OR] 0.60, 95% confidence interval [CI] 0.36–0.99, P = 0.013) but not NIV (OR 1.57, 95% CI 0.78–3.21) was associated with a reduction in oxygenation failure). Overall 90-day mortality was 21%. By multivariable analysis, HFNC was not associated with a change in mortality (OR 0.90, 95% CI 0.61–1.33), while NIV was associated with increased mortality (OR 2.75, 95% CI 1.79–4.21, P &lt; 0.001). Conclusion In patients with COVID-19, HFNC was associated with a reduction in oxygenation failure without improvement in 90-day mortality, whereas NIV was associated with a higher mortality in these patients. Randomized controlled trials are needed. </jats:sec

    Early prone positioning in acute respiratory distress syndrome related to COVID-19: a propensity score analysis from the multicentric cohort COVID-ICU network—the ProneCOVID study

    No full text
    Abstract Background Delaying time to prone positioning (PP) may be associated with higher mortality in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). We evaluated the use and the impact of early PP on clinical outcomes in intubated patients hospitalized in intensive care units (ICUs) for COVID-19. Methods All intubated patients with ARDS due to COVID-19 were involved in a secondary analysis from a prospective multicenter cohort study of COVID-ICU network including 149 ICUs across France, Belgium and Switzerland. Patients were followed-up until Day-90. The primary outcome was survival at Day-60. Analysis used a Cox proportional hazard model including a propensity score. Results Among 2137 intubated patients, 1504 (70.4%) were placed in PP during their ICU stay and 491 (23%) during the first 24 h following ICU admission. One hundred and eighty-one patients (36.9%) of the early PP group had a PaO2/FiO2 ratio &gt; 150 mmHg when prone positioning was initiated. Among non-early PP group patients, 1013 (47.4%) patients had finally been placed in PP within a median delay of 3 days after ICU admission. Day-60 mortality in non-early PP group was 34.2% versus 39.3% in the early PP group (p = 0.038). Day-28 and Day-90 mortality as well as the need for adjunctive therapies was more important in patients with early PP. After propensity score adjustment, no significant difference in survival at Day-60 was found between the two study groups (HR 1.34 [0.96–1.68], p = 0.09 and HR 1.19 [0.998–1.412], p = 0.053 in complete case analysis or in multiple imputation analysis, respectively). Conclusions In a large multicentric international cohort of intubated ICU patients with ARDS due to COVID-19, PP has been used frequently as a main treatment. In this study, our data failed to show a survival benefit associated with early PP started within 24 h after ICU admission compared to PP after day-1 for all COVID-19 patients requiring invasive mechanical ventilation regardless of their severity. </jats:sec

    Predicting 90-day survival of patients with COVID-19: Survival of Severely Ill COVID (SOSIC) scores

    No full text
    Abstract Background Predicting outcomes of critically ill intensive care unit (ICU) patients with coronavirus-19 disease (COVID-19) is a major challenge to avoid futile, and prolonged ICU stays. Methods The objective was to develop predictive survival models for patients with COVID-19 after 1-to-2 weeks in ICU. Based on the COVID–ICU cohort, which prospectively collected characteristics, management, and outcomes of critically ill patients with COVID-19. Machine learning was used to develop dynamic, clinically useful models able to predict 90-day mortality using ICU data collected on day (D) 1, D7 or D14. Results Survival of Severely Ill COVID (SOSIC)-1, SOSIC-7, and SOSIC-14 scores were constructed with 4244, 2877, and 1349 patients, respectively, randomly assigned to development or test datasets. The three models selected 15 ICU-entry variables recorded on D1, D7, or D14. Cardiovascular, renal, and pulmonary functions on prediction D7 or D14 were among the most heavily weighted inputs for both models. For the test dataset, SOSIC-7’s area under the ROC curve was slightly higher (0.80 [0.74–0.86]) than those for SOSIC-1 (0.76 [0.71–0.81]) and SOSIC-14 (0.76 [0.68–0.83]). Similarly, SOSIC-1 and SOSIC-7 had excellent calibration curves, with similar Brier scores for the three models. Conclusion The SOSIC scores showed that entering 15 to 27 baseline and dynamic clinical parameters into an automatable XGBoost algorithm can potentially accurately predict the likely 90-day mortality post-ICU admission (sosic.shinyapps.io/shiny). Although external SOSIC-score validation is still needed, it is an additional tool to strengthen decisions about life-sustaining treatments and informing family members of likely prognosis. </jats:sec

    Characteristics and prognosis of bloodstream infection in patients with COVID-19 admitted in the ICU: an ancillary study of the COVID-ICU study

    No full text
    Abstract Background Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-COV 2) and requiring intensive care unit (ICU) have a high incidence of hospital-acquired infections; however, data regarding hospital acquired bloodstream infections (BSI) are scarce. We aimed to investigate risk factors and outcome of BSI in critically ill coronavirus infectious disease-19 (COVID-19) patients. Patients and methods We performed an ancillary analysis of a multicenter prospective international cohort study (COVID-ICU study) that included 4010 COVID-19 ICU patients. For the present analysis, only those with data regarding primary outcome (death within 90 days from admission) or BSI status were included. Risk factors for BSI were analyzed using Fine and Gray competing risk model. Then, for outcome comparison, 537 BSI-patients were matched with 537 controls using propensity score matching. Results Among 4010 included patients, 780 (19.5%) acquired a total of 1066 BSI (10.3 BSI per 1000 patients days at risk) of whom 92% were acquired in the ICU. Higher SAPS II, male gender, longer time from hospital to ICU admission and antiviral drug before admission were independently associated with an increased risk of BSI, and interestingly, this risk decreased over time. BSI was independently associated with a shorter time to death in the overall population (adjusted hazard ratio (aHR) 1.28, 95% CI 1.05–1.56) and, in the propensity score matched data set, patients with BSI had a higher mortality rate (39% vs 33% p = 0.036). BSI accounted for 3.6% of the death of the overall population. Conclusion COVID-19 ICU patients have a high risk of BSI, especially early after ICU admission, risk that increases with severity but not with corticosteroids use. BSI is associated with an increased mortality rate. </jats:sec

    Type 1 Diabetes in People Hospitalized for COVID-19: New Insights From the CORONADO Study

    Full text link

    The association between macrovascular complications and intensive care admission, invasive mechanical ventilation, and mortality in people with diabetes hospitalized for coronavirus disease-2019 (COVID-19)

    No full text
    International audienceAbstract Background It is not clear whether pre-existing macrovascular complications (ischemic heart disease, stroke or peripheral artery disease) are associated with health outcomes in people with diabetes mellitus hospitalized for COVID-19. Methods We conducted cohort studies of adults with pre-existing diabetes hospitalized for COVID-19 infection in the UK, France, and Spain during the early phase of the pandemic (between March 2020—October 2020). Logistic regression models adjusted for demographic factors and other comorbidities were used to determine associations between previous macrovascular disease and relevant clinical outcomes: mortality, intensive care unit (ICU) admission and use of invasive mechanical ventilation (IMV) during the hospitalization. Output from individual logistic regression models for each cohort was combined in a meta-analysis. Results Complete data were available for 4,106 (60.4%) individuals. Of these, 1,652 (40.2%) had any prior macrovascular disease of whom 28.5% of patients died. Mortality was higher for people with compared to those without previous macrovascular disease (37.7% vs 22.4%). The combined crude odds ratio (OR) for previous macrovascular disease and mortality for all four cohorts was 2.12 (95% CI 1.83–2.45 with an I 2 of 60%, reduced after adjustments for age, sex, type of diabetes, hypertension, microvascular disease, ethnicity, and BMI to adjusted OR 1.53 [95% CI 1.29–1.81]) for the three cohorts. Further analysis revealed that ischemic heart disease and cerebrovascular disease were the main contributors of adverse outcomes. However, proportions of people admitted to ICU (adjOR 0.48 [95% CI 0.31–0.75], I 2 60%) and the use of IMV during hospitalization (adjOR 0.52 [95% CI 0.40–0.68], I 2 37%) were significantly lower for people with previous macrovascular disease. Conclusions This large multinational study of people with diabetes mellitus hospitalized for COVID-19 demonstrates that previous macrovascular disease is associated with higher mortality and lower proportions admitted to ICU and treated with IMV during hospitalization suggesting selective admission criteria. Our findings highlight the importance correctly assess the prognosis and intensive monitoring in this high-risk group of patients and emphasize the need to design specific public health programs aimed to prevent SARS-CoV-2 infection in this subgroup
    corecore