716 research outputs found
OGLE-2016-BLG-0613LABb: A Microlensing Planet in a Binary System
We present the analysis of OGLE-2016-BLG-0613, for which the lensing light
curve appears to be that of a typical binary-lens event with two caustic spikes
but with a discontinuous feature on the trough between the spikes. We find that
the discontinuous feature was produced by a planetary companion to the binary
lens. We find 4 degenerate triple-lens solution classes, each composed of a
pair of solutions according to the well-known wide/close planetary degeneracy.
One of these solution classes is excluded due to its relatively poor fit. For
the remaining three pairs of solutions, the most-likely primary mass is about
while the planet is a super-Jupiter. In all cases the
system lies in the Galactic disk, about half-way toward the Galactic bulge.
However, in one of these three solution classes, the secondary of the binary
system is a low-mass brown dwarf, with relative mass ratios (1 : 0.03 : 0.003),
while in the two others the masses of the binary components are comparable.
These two possibilities can be distinguished in about 2024 when the measured
lens-source relative proper motion will permit separate resolution of the lens
and source.Comment: 14 pages, 9 figure
Space-based Microlens Parallax Observation As a Way to Resolve the Severe Degeneracy between Microlens-parallax and Lens-orbital Effect
In this paper, we demonstrate the severity of the degeneracy between the
microlens-parallax and lens-orbital effects by presenting the analysis of the
gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious
deviation from the model based on the the linear observer motion and the static
binary, it is found that the residual can be almost equally well explained by
either the parallactic motion of the Earth or the rotation of the binary lens
axis, resulting in the severe degeneracy between the two effects. We show that
the degeneracy can be readily resolved with the additional data provided by
space-based microlens parallax observations. Enabling to distinguish between
the two higher-order effects, space-based microlens parallax observations will
make it possible not only to accurately determine the physical lens parameters
but also to further constrain the orbital parameters of binary lenses.Comment: 6 pages, 5 figure
OGLE-2016-BLG-1469L: Microlensing Binary Composed of Brown Dwarfs
We report the discovery of a binary composed of two brown dwarfs, based on
the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection
of both finite-source and microlens-parallax effects, we are able to measure
both the masses , , and distance
kpc, as well as the projected separation au. This is the third brown-dwarf binary detected using the microlensing
method, demonstrating the usefulness of microlensing in detecting field
brown-dwarf binaries with separations less than 1 au.Comment: 8 pages, 8 figure
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV
We report new STAR measurements of mid-rapidity yields for the ,
, , , , ,
particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity
yields for the , , particles in Au+Au at
\sNN{200}. We show that at a given number of participating nucleons, the
production of strange hadrons is higher in Cu+Cu collisions than in Au+Au
collisions at the same center-of-mass energy. We find that aspects of the
enhancement factors for all particles can be described by a parameterization
based on the fraction of participants that undergo multiple collisions
Measurement of the charged-pion polarisability
The COMPASS collaboration at CERN has investigated pion Compton scattering,
, at centre-of-mass energy below 3.5 pion
masses. The process is embedded in the reaction
, which is initiated by
190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons
is selected by isolating the sharp Coulomb peak observed at smallest momentum
transfers, \,(GeV/). From a sample of 63\,000 events the
pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\
0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times
10^{-4}\,\mbox{fm}^3\alpha_\pi=-\beta_\pi$, which
relates the electric and magnetic dipole polarisabilities. It is the most
precise measurement of this fundamental low-energy parameter of strong
interaction, that has been addressed since long by various methods with
conflicting outcomes. While this result is in tension with previous dedicated
measurements, it is found in agreement with the expectation from chiral
perturbation theory. An additional measurement replacing pions by muons, for
which the cross-section behavior is unambigiously known, was performed for an
independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl
Azimuthally anisotropic emission of low-momentum direct photons in AuAu collisions at GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd
and 3rd order Fourier coefficients of the azimuthal distributions of direct
photons emitted at midrapidity in AuAu collisions at
GeV for various collision centralities. Combining two different analysis
techniques, results were obtained in the transverse momentum range of
GeV/. At low the second-order coefficients, , are
similar to the ones observed in hadrons. Third order coefficients, , are
nonzero and almost independent of centrality. These new results on and
, combined with previously published results on yields, are compared to
model calculations that provide yields and asymmetries in the same framework.
Those models are challenged to explain simultaneously the observed large yield
and large azimuthal anisotropies.Comment: 552 authors, 15 pages, 9 figures, 3 tables, 2007 and 2010 data. v2 is
version accepted for publication by Phys. Rev. C. Plain text data tables for
the points plotted in figures for this and previous PHENIX publications are
(or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Azimuthal anisotropy of pi^0 and eta mesons in Au+Au collisions at sqrt(s_NN)=200 GeV
The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are
measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse
momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are
found to be consistent between the two meson species over the measured p_T
range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T
for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of
underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is
systematically larger in central collisions, which may reflect the combined
effects of fluctuations in the initial collision geometry and finite viscosity
in the evolving medium.Comment: 384 authors, 71 institutions, 11 pages, 9 figures, and 2 tables.
Submitted to Physical Review C. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Cross section for production via dielectrons in dAu collisions at GeV
We report a measurement of pairs from semileptonic heavy-flavor
decays in Au collisions at GeV. Exploring the mass
and transverse-momentum dependence of the yield, the bottom decay contribution
can be isolated from charm, and quantified by comparison to {\sc pythia} and
{\sc mc@nlo} simulations. The resulting -production cross section is
~mb, which is equivalent to a nucleon-nucleon cross section of
b.Comment: 375 authors, 16 pages, 8 figures, 7 tables, 2008 data. Submitted to
Phys. Rev. C Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Transverse energy production and charged-particle multiplicity at midrapidity in various systems from to 200 GeV
Measurements of midrapidity charged particle multiplicity distributions,
, and midrapidity transverse-energy distributions,
, are presented for a variety of collision systems and energies.
Included are distributions for AuAu collisions at ,
130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, CuCu collisions at
and 62.4 GeV, CuAu collisions at
GeV, UU collisions at GeV,
Au collisions at GeV, HeAu collisions at
GeV, and collisions at
GeV. Centrality-dependent distributions at midrapidity are presented in terms
of the number of nucleon participants, , and the number of
constituent quark participants, . For all collisions
down to GeV, it is observed that the midrapidity data
are better described by scaling with than scaling with . Also presented are estimates of the Bjorken energy density,
, and the ratio of to ,
the latter of which is seen to be constant as a function of centrality for all
systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010,
2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.
- …
