11,445 research outputs found
A way to measure the water quality of the LHAASO-WCDA with cosmic muon signals
The Large High Altitude Air Shower Observatory (LHAASO) is to be built at
Daocheng, Sichuan Province, China. As one of the major components of the LHAASO
project, a Water Cherenkov Detector Array (WCDA), with an area of 78,000~, contains 350,000~tons of purified water. The water transparency and its
stability are critical for successful long-term operation of this project. To
gain full knowledge of the water Cherenkov technique and investigate the
engineering issues, a 9-cell detector array has been built at the Yangbajing
site, Tibet, China. With the help of the distribution of single cosmic muon
signals, the monitoring and measurement of water transparency are studied. The
results show that a precision of several percent can be obtained for the
attenuation length measurement, which satisfies the requirements of the
experiment. In the near future, this method could be applied to the LHAASO-WCDA
project
Type 2 diabetes mellitus and cerebrospinal fluid Alzheimer's disease biomarker amyloid β1-42 in Alzheimer's Disease Neuroimaging Initiative participants
Introduction
Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease. Cerebrospinal fluid (CSF) amyloid β (Aβ) 1-42 is an important Alzheimer's disease biomarker. However, it is inconclusive on how T2DM is related to CSF Aβ1-42.
Methods
Participants with T2DM were selected from the Alzheimer's Disease Neuroimaging Initiative by searching keywords from the medical history database. A two-way analysis of covariance model was used to analyze how T2DM associates with CSF Aβ1-42 or cerebral cortical Aβ.
Results
CSF Aβ1-42 was higher in the T2DM group than the nondiabetic group. The inverse relation between CSF Aβ1-42 and cerebral cortical Aβ was independent of T2DM status. Participants with T2DM had a lower cerebral cortical Aβ in anterior cingulate, precuneus, and temporal lobe than controls.
Discussion
T2DM is positively associated with CSF Aβ1-42 but negatively with cerebral cortical Aβ. The decreased cerebral cortical Aβ associated with T2DM is preferentially located in certain brain regions
Association of cancer history with Alzheimer's disease onset and structural brain changes
Epidemiological studies show a reciprocal inverse association between cancer and Alzheimer's disease (AD). The common mechanistic theory for this effect posits that cells have an innate tendency toward apoptotic or survival pathways, translating to increased risk for either neurodegeneration or cancer. However, it has been shown that cancer patients experience cognitive dysfunction pre- and post-treatment as well as alterations in cerebral gray matter density (GMD) on MRI. To further investigate these issues, we analyzed the association between cancer history (CA±) and age of AD onset, and the relationship between GMD and CA± status across diagnostic groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study. Data was analyzed from 1609 participants with information on baseline cancer history and AD diagnosis, age of AD onset, and baseline MRI scans. Participants were CA+ (N = 503) and CA− (N = 1106) diagnosed with AD, mild cognitive impairment (MCI), significant memory concerns (SMC), and cognitively normal older adults. As in previous studies, CA+ was inversely associated with AD at baseline (P = 0.025); interestingly, this effect appears to be driven by non-melanoma skin cancer (NMSC), the largest cancer category in this study (P = 0.001). CA+ was also associated with later age of AD onset (P < 0.001), independent of apolipoprotein E (APOE) ε4 allele status, and individuals with two prior cancers had later mean age of AD onset than those with one or no prior cancer (P < 0.001), suggesting an additive effect. Voxel-based morphometric analysis of GMD showed CA+ had lower GMD in the right superior frontal gyrus compared to CA− across diagnostic groups (Pcrit < 0.001, uncorrected); this cluster of lower GMD appeared to be driven by history of invasive cancer types, rather than skin cancer. Thus, while cancer history is associated with a measurable delay in AD onset independent of APOE ε4, the underlying mechanism does not appear to be cancer-related preservation of GMD
Measurement of the Target-Normal Single-Spin Asymmetry in Quasi-Elastic Scattering from the Reaction He
We report the first measurement of the target single-spin asymmetry, ,
in quasi-elastic scattering from the inclusive reaction
He on a He gas target polarized normal to the
lepton scattering plane. Assuming time-reversal invariance, this asymmetry is
strictly zero for one-photon exchange. A non-zero can arise from the
interference between the one- and two-photon exchange processes which is
sensitive to the details of the sub-structure of the nucleon. An experiment
recently completed at Jefferson Lab yielded asymmetries with high statistical
precision at 0.13, 0.46 and 0.97 GeV. These measurements
demonstrate, for the first time, that the He asymmetry is clearly non-zero
and negative with a statistical significance of (8-10). Using measured
proton-to-He cross-section ratios and the effective polarization
approximation, neutron asymmetries of (1-3)% were obtained. The neutron
asymmetry at high is related to moments of the Generalized Parton
Distributions (GPDs). Our measured neutron asymmetry at GeV
agrees well with a prediction based on two-photon exchange using a GPD model
and thus provides a new, independent constraint on these distributions
A Unified Approach to the Classical Statistical Analysis of Small Signals
We give a classical confidence belt construction which unifies the treatment
of upper confidence limits for null results and two-sided confidence intervals
for non-null results. The unified treatment solves a problem (apparently not
previously recognized) that the choice of upper limit or two-sided intervals
leads to intervals which are not confidence intervals if the choice is based on
the data. We apply the construction to two related problems which have recently
been a battle-ground between classical and Bayesian statistics: Poisson
processes with background, and Gaussian errors with a bounded physical region.
In contrast with the usual classical construction for upper limits, our
construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist
coverage greater than the stated confidence) in the Gaussian case and reduce it
to a level dictated by discreteness in the Poisson case. We generalize the
method in order to apply it to analysis of experiments searching for neutrino
oscillations. We show that this technique both gives correct coverage and is
powerful, while other classical techniques that have been used by neutrino
oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with
published version. A few small changes, plus the two substantive changes we
made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C).
It was inconsistent with our actual definition in Sec. VI. 2) "Note added in
proof" at end of the Conclusio
Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized He target
An experiment to measure single-spin asymmetries in semi-inclusive production
of charged pions in deep-inelastic scattering on a transversely polarized
He target was performed at Jefferson Lab in the kinematic region of
and . The pretzelosity asymmetries on
He, which can be expressed as the convolution of the
transverse momentum dependent distribution functions and the Collins
fragmentation functions in the leading order, were measured for the first time.
Using the effective polarization approximation, we extracted the corresponding
neutron asymmetries from the measured He asymmetries and cross-section
ratios between the proton and He. Our results show that for both
on He and on the neutron the pretzelosity asymmetries are
consistent with zero within experimental uncertainties.Comment: 6 pages, 3 figures; enlarged the legends in Fig.3; added 3 citation
Single Spin Asymmetries in Charged Kaon Production from Semi-Inclusive Deep Inelastic Scattering on a Transversely Polarized Target
We report the first measurement of target single spin asymmetries of charged
kaons produced in semi-inclusive deep inelastic scattering of electrons off a
transversely polarized target. Both the Collins and Sivers
moments, which are related to the nucleon transversity and Sivers
distributions, respectively, are extracted over the kinematic range of
0.10.4 for and production. While the Collins and
Sivers moments for are consistent with zero within the experimental
uncertainties, both moments for favor negative values. The Sivers
moments are compared to the theoretical prediction from a phenomenological fit
to the world data. While the Sivers moments are consistent with the
prediction, the results differ from the prediction at the 2-sigma
level.Comment: 6 pages, 3 figure
Moments of the neutron structure function at intermediate
We present new experimental results of the He spin structure function
in the resonance region at values between 1.2 and 3.0 (GeV/c).
Spin dependent moments of the neutron were then extracted. Our main result, the
resonance contribution to the neutron matrix element, was found to be
small at =2.4 (GeV/c) and in agreement with the Lattice QCD
calculation. The Burkhardt-Cottingham sum rule for He and the neutron was
tested with the measured data and using the Wandzura-Wilczek relation for the
low unmeasured region. A small deviation was observed at values
between 0.5 and 1.2 (GeV/c) for the neutron
Evidence for at center-of-mass energies from 4.009 to 4.360 GeV
Using data samples collected at center-of-mass energies of =
4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the
BEPCII collider, we perform a search for the process
and find evidence for and
with statistical significances of 3.0 and
3.4, respectively. The Born cross sections
, as well as their upper limits at the
90% confidence level are determined at each center-of-mass energy.Comment: 8 pages, 7 figures, 3 table
Observation of decays into vector meson pairs , , and
Decays of to vector meson pairs , and
are observed for the first time using
\psip events accumulated at the BESIII detector at the BEPCII
collider. The branching fractions are measured to be , , and , for , , and ,
respectively. The observation of decays into a pair of vector
mesons , and indicates that the hadron
helicity selection rule is significantly violated in decays. In
addition, the measurement of gives the rate of doubly
OZI-suppressed decay. Branching fractions for and
decays into other vector meson pairs are also measured with improved precision.Comment: 4 pages, 2 figure
- …
