274 research outputs found
Observation of periodic variable stars towards the galactic spiral arms by EROS II
We present the results of a massive variability search based on a photometric
survey of a six square degree region along the Galactic plane at (, ) and (, ). This
survey was performed in the framework of the EROS II (Exp\'erience de Recherche
d'Objets Sombres) microlensing program. The variable stars were found among
1,913,576 stars that were monitored between April and June 1998 in two
passbands, with an average of 60 measurements. A new period-search technique is
proposed which makes use of a statistical variable that characterizes the
overall regularity of the flux versus phase diagram. This method is well suited
when the photometric data are unevenly distributed in time, as is our case.
1,362 objects whose luminosity varies were selected. Among them we identified 9
Cepheids, 19 RR Lyrae, 34 Miras, 176 eclipsing binaries and 266 Semi-Regular
stars. Most of them are newly identified objects. The cross-identification with
known catalogues has been performed. The mean distance of the RR Lyrae is
estimated to be kpc undergoing an average absorption of
magnitudes. This distance is in good agreement with the one
of disc stars which contribute to the microlensing source star population.Our
catalogue and light curves are available electronically from the CDS,
Strasbourg and from our Web site http://eros.in2p3.fr.Comment: 15 pages, 11 figures, accepted in A&A (april 2002
Guidelines For The Standardization Of Preanalytic Variables For Blood-based Biomarker Studies In Alzheimer\u27s Disease Research
The lack of readily available biomarkers is a significant hindrance toward progressing to effective therapeutic and preventative strategies for Alzheimer\u27s disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field to foster cross-validation across cohorts and laboratorie
Association of Changes in Cerebral and Hypothalamic Structure With Sleep Dysfunction in Patients With Genetic Frontotemporal Dementia
Background and objectives: Sleep dysfunction is common in patients with neurodegenerative disorders; however, its neural underpinnings remain poorly characterized in genetic frontotemporal dementia (FTD). Hypothalamic nuclei important for sleep regulation may be related to this dysfunction. Thus, we examined changes in hypothalamic structure across the lifespan in patients with genetic FTD and whether these changes related to sleep dysfunction. Methods: Data from the observational multisite Genetic Frontotemporal Dementia Initiative (GENFI) study were used. GENFI participants were adult members of a family with known pathogenic variants in the microtubule-associated protein tau (MAPT) or progranulin (GRN) genes or an expansion in the chromosome 9 open reading frame 72 (C9orf72) gene. Family members without a pathogenic variant served as controls. GENFI participants were followed annually, with up to 7 visits, and underwent clinical characterization, neuropsychological testing, biological sampling, and brain MRI. For our analyses, participants were included if they had at least 1 T1-weighted structural MRI scan available. Linear mixed-effect models were used to examine changes in sleep dysfunction, measured using the Cambridge Behavioural Inventory-Revised sleep subscale, volumetric changes in hypothalamic regions, and the associations between cortical and hypothalamic atrophy and sleep dysfunction. Results: Participants included 491 adults with pathogenic genetic variants of FTD (27.9% symptomatic; median age: 49.4 years, 56.4%F) and 321 controls (median age: 44.2 years, 57.3%F). Pathogenic variant carriers showed greater sleep dysfunction across the adult lifespan (β = [0.25-0.34], q < 0.005) with MAPT carriers alone showing presymptomatic sleep changes (β = 0.34, q = 0.005). Cortical thinning in frontal and parietal regions was associated with greater sleep disturbances in C9orf72 and GRN carriers (q < 0.05). MAPT carriers showed consistently significant volume loss over time across all sleep-relevant hypothalamic subunits (β = [-0.56 to -0.39], q < 0.005), and reduced volumes in these subunits were related to increased sleep dysfunction (β = [-0.20 to -0.16], q < 0.05). Discussion: These findings suggest that sleep dysfunction in patients with genetic FTD may be attributable to atrophy in sleep-relevant hypothalamic subunits, with the most severe and consistent deficits observed in MAPT carriers. While biologically plausible, our statistical approach cannot confirm a causal link between atrophy and sleep disturbances
Shared genetic contribution to ischemic stroke and Alzheimer's disease
Objective:
Increasing evidence suggests epidemiological and pathological links between Alzheimer's disease (AD) and ischemic stroke (IS). We investigated the evidence that shared genetic factors underpin the two diseases.
Methods:
Using genome‐wide association study (GWAS) data from METASTROKE + (15,916 IS cases and 68,826 controls) and the International Genomics of Alzheimer's Project (IGAP; 17,008 AD cases and 37,154 controls), we evaluated known associations with AD and IS. On the subset of data for which we could obtain compatible genotype‐level data (4,610 IS cases, 1,281 AD cases, and 14,320 controls), we estimated the genome‐wide genetic correlation (rG) between AD and IS, and the three subtypes (cardioembolic, small vessel, and large vessel), using genome‐wide single‐nucleotide polymorphism (SNP) data. We then performed a meta‐analysis and pathway analysis in the combined AD and small vessel stroke data sets to identify the SNPs and molecular pathways through which disease risk may be conferred.
Results:
We found evidence of a shared genetic contribution between AD and small vessel stroke (rG [standard error] = 0.37 [0.17]; p = 0.011). Conversely, there was no evidence to support shared genetic factors in AD and IS overall or with the other stroke subtypes. Of the known GWAS associations with IS or AD, none reached significance for association with the other trait (or stroke subtypes). A meta‐analysis of AD IGAP and METASTROKE + small vessel stroke GWAS data highlighted a region (ATP5H/KCTD2/ICT1) associated with both diseases (p = 1.8 × 10−8). A pathway analysis identified four associated pathways involving cholesterol transport and immune response.
Interpretation:
Our findings indicate shared genetic susceptibility to AD and small vessel stroke and highlight potential causal pathways and loci. Ann Neurol 2016;79:739–74
Impaired glymphatic system in genetic frontotemporal dementia
The glymphatic system is an emerging target in neurodegenerative disorders. Here, we investigated the activity of the glymphatic system in genetic frontotemporal dementia with a diffusion-based technique called diffusion tensor image analysis along the perivascular space. We investigated 291 subjects with symptomatic or presymptomatic frontotemporal dementia (112 with chromosome 9 open reading frame 72 [C9orf72] expansion, 119 with granulin [GRN] mutations and 60 with microtubule-associated protein tau [MAPT] mutations) and 83 non-carriers (including 50 young and 33 old non-carriers). We computed the diffusion tensor image analysis along the perivascular space index by calculating diffusivities in the x-, y- and z-axes of the plane of the lateral ventricle body. Clinical stage and blood-based markers were considered. A subset of 180 participants underwent cognitive follow-ups for a total of 640 evaluations. The diffusion tensor image analysis along the perivascular space index was lower in symptomatic frontotemporal dementia (estimated marginal mean ± standard error, 1.21 ± 0.02) than in old non-carriers (1.29 ± 0.03, P = 0.009) and presymptomatic mutation carriers (1.30 ± 0.01, P < 0.001). In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity (β = −1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image analysis along the perivascular space and higher plasma neurofilament light chain was reported (β = −0.28, P = 0.063). Analysis of longitudinal data demonstrated that worsening of disease severity was faster in patients with low diffusion tensor image analysis along the perivascular space at baseline than in those with average (P = 0.009) or high (P = 0.006) diffusion tensor image analysis along the perivascular space index. Using a non-invasive imaging approach as a proxy for glymphatic system function, we demonstrated glymphatic system abnormalities in the symptomatic stages of genetic frontotemporal dementia. Such measures of the glymphatic system may elucidate pathophysiological processes in human frontotemporal dementia and facilitate early phase trials of genetic frontotemporal dementia
Language impairment in the genetic forms of behavioural variant frontotemporal dementia
© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Background: Behavioural variant fronto-temporal dementia (bvFTD) is characterised by a progressive change in personality in association with atrophy of the frontal and temporal lobes. Whilst language impairment has been described in people with bvFTD, little is currently known about the extent or type of linguistic difficulties that occur, particularly in the genetic forms.
Methods: Participants with genetic bvFTD along with healthy controls were recruited from the international multicentre Genetic FTD Initiative (GENFI). Linguistic symptoms were assessed using items from the Progressive Aphasia Severity Scale (PASS). Additionally, participants undertook the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency test. Participants underwent a 3T volumetric T1-weighted MRI, with language network regional brain volumes measured and compared between the genetic groups and controls.
Results: 76% of the genetic bvFTD cohort had impairment in at least one language symptom: 83% C9orf72, 80% MAPT and 56% GRN mutation carriers. All three genetic groups had significantly impaired functional communication, decreased fluency, and impaired sentence comprehension. C9orf72 mutation carriers also had significantly impaired articulation and word retrieval as well as dysgraphia whilst the MAPT mutation group also had impaired word retrieval and single word comprehension. All three groups had difficulties with naming, semantic knowledge and verbal fluency. Atrophy in key left perisylvian language regions differed between the groups, with generalised involvement in the C9orf72 group and more focal temporal and insula involvement in the other groups. Correlates of language symptoms and test scores also differed between the groups.
Conclusions: Language deficits exist in a substantial proportion of people with familial bvFTD across all three genetic groups. Significant atrophy is seen in the dominant perisylvian language areas and correlates with language impairments within each of the genetic groups. Improved understanding of the language phenotype in the main genetic bvFTD subtypes will be helpful in future studies, particularly in clinical trials where accurate stratification and monitoring of disease progression is required.info:eu-repo/semantics/publishedVersio
Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing
Introduction Late-onset Alzheimer’s disease (LOAD, onset age > 60 years) is the most prevalent dementia in the elderly 1 , and risk is partially driven by genetics 2 . Many of the loci responsible for this genetic risk were identified by genome-wide association studies (GWAS) 3–8 . To identify additional LOAD risk loci, the we performed the largest GWAS to date (89,769 individuals), analyzing both common and rare variants. We confirm 20 previous LOAD risk loci and identify four new genome-wide loci ( IQCK , ACE , ADAM10 , and ADAMTS1 ). Pathway analysis of these data implicates the immune system and lipid metabolism, and for the first time tau binding proteins and APP metabolism. These findings show that genetic variants affecting APP and Aβ processing are not only associated with early-onset autosomal dominant AD but also with LOAD. Analysis of AD risk genes and pathways show enrichment for rare variants ( P = 1.32 × 10 −7 ) indicating that additional rare variants remain to be identified.ADGC. The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; Samples from the National Cell Repository for Alzheimer’s Disease (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this study. We thank contributors who collected samples used in this study, as well as patients and their families, whose help and participation made this work possible; Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689-01); NACC, U01 AG016976; NIA LOAD (Columbia University), U24 AG026395, U24 AG026390, R01AG041797; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01 AG048927, R01AG33193, R01 AG009029; Columbia University, P50 AG008702, R37 AG015473, R01 AG037212, R01 AG028786; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG006781, UO1 HG004610, UO1 HG006375, U01 HG008657; Indiana University, P30 AG10133, R01 AG009956, RC2 AG036650; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574, R01 AG032990, KL2 RR024151; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, UL1 RR029893, 5R01AG012101, 5R01AG022374, 5R01AG013616, 1RC2AG036502, 1R01AG035137; North Carolina A&T University, P20 MD000546, R01 AG28786-01A1; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG030146, R01 AG01101, RC2 AG036650, R01 AG22018; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653, AG041718, AG07562, AG02365; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136, R01 AG042437; University of Wisconsin, P50 AG033514; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991, P01 AG026276. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Support was also from the Alzheimer’s Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147), the US Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program, and BrightFocus Foundation (MP-V, A2111048). P.S.G.-H. is supported by Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG041232 to AJM and MJH, The Banner Alzheimer’s Foundation, The Johnnie B. Byrd Sr. Alzheimer’s Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council),South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer’s Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, Universitat de Barcelona. ADNI data collection and sharing was funded by the National Institutes of Health Grant U01 AG024904 and Department of Defense award number W81XWH-12-2-0012. ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. We thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are ex-officio ADGC members.
EADI. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease) including funding from MEL (Metropole européenne de Lille), ERDF (European Regional Development Fund) and Conseil Régional Nord Pas de Calais. This work was supported by INSERM, the National Foundation for Alzheimer’s disease and related disorders, the Institut Pasteur de Lille and the Centre National
de Génotypage, the JPND PERADES, GENMED, and the FP7 AgedBrainSysBio. The Three-City Study was performed as part of collaboration between the Institut National de la Santé et de la Recherche Médicale (Inserm), the Victor Segalen Bordeaux II University and Sanofi-
Synthélabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de
Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Agence Nationale de la Recherche, ANR supported the COGINUT and COVADIS projects. Fondation de France and the joint French Ministry of Research/INSERM “Cohortes et collections de données biologiques” programme. Lille Génopôle received an unconditional grant
from Eisai. The Three-city biological bank was developed and maintained by the laboratory for genomic analysis LAG-BRC - Institut Pasteur de Lille. This work was further supported by the CoSTREAM project (http://www.costream.eu/) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement 667375.
Belgium samples: Research at the Antwerp site is funded in part by the Belgian Science Policy Office Interuniversity Attraction Poles program, the Belgian Alzheimer Research Foundation, the Flemish government-initiated Flanders Impulse Program on Networks for Dementia Research (VIND) and the Methusalem excellence program, the Research Foundation Flanders (FWO), and the University of Antwerp Research Fund, Belgium. The Antwerp site authors thank the personnel of the VIB Neuromics Support Facility, the Biobank of the Institute Born-Bunge and neurology departments at the contributing hospitals. The authors acknowledge the members of the BELNEU consortium for their contributions to the clinical and pathological characterization of Belgium patients and the personnel of the Diagnostic Service Facility for the genetic testing.
Finish sample collection: Financial support for this project was provided by Academy of Finland (grant number 307866), Sigrid Jusélius Foundation and the Strategic Neuroscience Funding of the University of Eastern Finland.
Swedish sample collection: Financially supported in part by the Swedish Brain Power network, the Marianne and Marcus Wallenberg Foundation, the Swedish Research Council (521-2010-3134, 2015-02926), the King Gustaf V and Queen Victoria’s Foundation of Freemasons, the Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and the Karolinska Institutet, the Swedish Brain Foundation and the Swedish Alzheimer Foundation”.
CHARGE. Infrastructure for the CHARGE Consortium is supported in part by National Heart, Lung, and Blood Institute grant HL105756 (Psaty) and RC2HL102419 (Boerwinkle) and the neurology working group by grants from the National Institute on Aging, R01 AG033193, U01 AG049505 and U01AG52409.
Rotterdam (RS). This study was funded by the Netherlands Organisation for Health Research and Development (ZonMW) as part of the Joint Programming for Neurological Disease (JPND)as part of the PERADES Program (Defining Genetic Polygenic, and Environmental Risk for Alzheimer’s disease using multiple powerful cohorts, focused Epigenetics and Stem cell metabolomics), Project number 733051021. This work was funded also by the European Union Innovative Medicine Initiative (IMI) programme under grant agreement No. 115975 as part of the Alzheimer’s Disease Apolipoprotein Pathology for Treatment Elucidation and Development (ADAPTED, https://www.imi-adapted.eu);and the European Union’s Horizon 2020 research and innovation programme as part of the Common mechanisms and pathways in Stroke and Alzheimer’s disease CoSTREAM project (www.costream.eu, grant agreement No. 667375). The current study is supported by the Deltaplan Dementie and Memorabel supported by ZonMW (Project number 733050814) and Alzheimer Nederland.
The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study (RS-I, RS-II, RS-III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organization of Scientific Research NWO Investments (Project number 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project number 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, MSc, for the creation and analysis of imputed data.
AGES. The AGES study has been funded by NIA contracts N01-AG-12100 and HHSN271201200022C with contributions from NEI, NIDCD, and NHLBI, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament).
Cardiovascular Health Study (CHS). This research was supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, and N01HC85086 and grant U01HL080295 and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional
contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG033193, R01AG023629, R01AG15928, and R01AG20098 and by U01AG049505 from the National Institute on Aging (NIA). The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology
Research Center. A full list of CHS principal investigators and institutions can be found at https://chs-nhlbi.org/. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.
Framingham Heart Study. This work was supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (contracts N01-HC-25195 and HHSN268201500001I). This study was also supported by grants from the National Institute on Aging: R01AG033193,
U01AG049505, U01AG52409, R01AG054076 (S. Seshadri). S. Seshadri and A.L.D. were also supported by additional grants from the National Institute on Aging (R01AG049607, R01AG033040) and the National Institute of Neurological Disorders and Stroke (R01- NS017950, NS100605). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health. GR@ACE cohort. Fundació ACE We would like to thank patients and controls who participated in this project. Genome Resesarch @ Fundació ACE project (GR@ACE) is supported by
Fundación bancaria “La Caixa”, Grifols SA, Fundació ACE and ISCIII. We also want to thank other private sponsors supporting the basic and clinical projects of our institution (Piramal AG, Laboratorios Echevarne, Araclon Biotech S.A. and Fundació ACE). We are indebted to Trinitat
Port-Carbó legacy and her family for their support of Fundació ACE research programs. Fundació ACE collaborates with the Centro de Investigación Biomédica en Red sobreEnfermedades Neurodegenerativas (CIBERNED, Spain) and is one of the participating centers of the Dementia Genetics Spanish Consortium (DEGESCO). A.R. and M.B. are receiving
support from the European Union/EFPIA Innovative Medicines Initiative Joint Undertaking ADAPTED and MOPEAD projects (Grants No. 115975 and 115985 respectively). M.B. and A.R. are also supported by national grants PI13/02434, PI16/01861 and PI17/01474. Acción
Estratégica en Salud integrated in the Spanish National R + D + I Plan and funded by ISCIII (Instituto de Salud Carlos III)-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER- “Una manera de Hacer Europa”). Control samples and data from patients included in this study were provided in part by the National DNA Bank Carlos III (www.bancoadn.org, University of Salamanca, Spain) and Hospital Universitario Virgen de Valme (Sevilla, Spain) and they were processed following standard operating procedures with the appropriate approval of the Ethical and Scientific Committee.
GERAD/PERADES. We thank all individuals who participated in this study. Cardiff University was supported by the Wellcome Trust, Alzheimer’s Society (AS; grant RF014/164), the Medical Research Council (MRC; grants G0801418/1, MR/K013041/1, MR/L023784/1), the European
Joint Programme for Neurodegenerative Disease (JPND, grant MR/L501517/1), Alzheimer’s Research UK (ARUK, grant ARUK-PG2014-1), Welsh Assembly Government (grant SGR544:CADR), a donation from the Moondance Charitable Foundation, and the UK Dementia Research Institute at Cardiff. Cambridge University acknowledges support from the MRC. ARUK supported sample collections at the Kings College London, the South West Dementia Bank, Universities of Cambridge, Nottingham, Manchester and Belfast. King’s College London was supported by the NIHR Biomedical Research Centre for Mental Health and Biomedical
Research Unit for Dementia at the South London and Maudsley NHS Foundation Trust and Kings College London and the MRC. Alzheimer’s Research UK (ARUK) and the Big Lottery Fund provided support to Nottingham University. Ulster Garden Villages, AS, ARUK, American Federation for Aging Research, NI R&D Office and the Royal College of Physicians/Dunhill Medical Trust provided support for Queen’s University, Belfast. The University of Southampton acknowledges support from the AS. The MRC and Mercer’s Institute for Research on Ageing supported the Trinity College group. DCR is a Wellcome Trust Principal Research fellow. The South West Dementia Brain Bank acknowledges support from Bristol Research into Alzheimer’s and Care of the Elderly. The Charles Wolfson Charitable Trust supported the OPTIMA group. Washington University was funded by NIH grants, Barnes Jewish Foundation and the Charles and Joanne Knight Alzheimer’s Research Initiative. Patient recruitment for the MRC Prion Unit/UCL Department of Neurodegenerative Disease collection was supported by the UCLH/UCL Biomed- ical Centre and their work was supported by the NIHR Queen Square Dementia BRU. LASER-AD was funded by Lundbeck SA. The Bonn group would like to thank Dr. Heike Koelsch for her scientific support. The Bonn group was funded by the German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant number 01GI0102, 01GI0711, 01GI0420. The AgeCoDe study group was supported by the German Federal Ministry for Education and Research grants 01 GI 0710, 01 GI 0712, 01 GI 0713, 01 GI 0714, 01 GI 0715, 01 GI 0716, 01 GI 0717. Genotyping of the Bonn case-control sample was funded by the German centre for Neurodegenerative Diseases (DZNE), Germany. The GERAD Consortium also used samples ascertained by the NIMH AD Genetics Initiative. HH was supported by a grant of the Katharina-Hardt-Foundation, Bad Homburg vor der Höhe, Germany. The KORA F4 studies were financed by Helmholtz Zentrum München; German Research Center for Environmental Health; BMBF; German National Genome Research Network and the Munich Center of Health Sciences. The Heinz Nixdorf Recall cohort was funded by the Heinz Nixdorf Foundation (Dr. Jur. G.Schmidt, Chairman) and BMBF. Coriell Cell Repositories is supported by NINDS and the Intramural Research Program of the National Institute on Aging. We acknowledge use of genotype data from the 1958 Birth Cohort collection, funded by the MRC and the Wellcome Trust which was genotyped by the Wellcome Trust Case Control Consortium and the Type-1 Diabetes Genetics Consortium, sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Allergy and
Infectious Diseases, National Human Genome Research Institute, National Institute of Child Health and Human Development and Juvenile Diabetes Research Foundation International.
The Bonn samples are part of the German Dementia Competance Network (DCN) and the German Research Network on Degenerative Dementia (KNDD), which are funded by the German Federal Ministry of Education and Research (grants KND: 01G10102, 01GI0420,
01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434; grants KNDD: 01GI1007A, 01GI0710, 01GI0711, 01GI0712, 01GI0713, 01GI0714, 01GI0715, 01GI0716, 01ET1006B). Markus M Nothen is a member of the German Research Foundation (DFG) cluster of excellence ImmunoSensation. Funding for Saarland University was provided by the German Federal Ministry of Education and Research (BMBF), grant number 01GS08125 to Matthias Riemenschneider. The University of Washington was supported by grants from the National Institutes of Health (R01-NS085419 and R01-AG044546), the Alzheimer’s Association (NIRG-11-200110) and the American Federation for Aging Research (Carlos Cruchaga was recipient of a New Investigator Award in Alzhei
Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study
© The Author(s) 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background: Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers.
Methods: We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP).
Results: CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores.
Conclusions: Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.This study was supported in the Netherlands by Memorabel grants from Deltaplan Dementie (ZonMw and Alzheimer Nederland; grant numbers 733050813, 733050103, 733050513), the Bluefield Project to Cure Frontotemporal Dementia, the Dioraphte foundation (grant number 1402 1300), and the European Joint Programme—Neurodegenerative Disease Research and the Netherlands Organisation for Health Research and Development (PreFrontALS: 733051042, RiMod-FTD: 733051024); in Belgium by the Mady Browaeys Fonds voor Onderzoek naar Frontotemporale Degeneratie; in the UK by the MRC UK GENFI grant (MR/M023664/1) and the JPND GENFI-PROX grant (2019-02248); JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH); ASE supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK; IJS is supported by the Alzheimer’s Association; JBR is supported by the Wellcome Trust (103838); in Spain by the Fundació Marató de TV3 (20143810 to RSV); in Germany by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy—ID 390857198) and by grant 779357 “Solve-RD” from the Horizon 2020 Research and Innovation Programme (to MS); in Sweden by grants from the Swedish FTD Initiative funded by the Schörling Foundation, grants from JPND PreFrontALS Swedish Research Council (VR) 529–2014-7504, Swedish Research Council (VR) 2015–02926, Swedish Research Council (VR) 2018–02754, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Swedish Demensfonden, Stohnes foundation, Gamla Tjänarinnor, Karolinska Institutet Doctoral Funding, and StratNeuro. HZ is a Wallenberg Scholar.info:eu-repo/semantics/publishedVersio
Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels
Introduction: MAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological hallmarks of Alzheimer’s disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this. Methods: We examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects (n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer’s Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144). We also assessed associations with brain MAPT gene expression levels measured in the cerebellum (n = 197) and temporal cortex (n = 202) of LOAD subjects. Six single nucleotide polymorphisms (SNPs) which tag MAPT haplotypes with frequencies greater than 1% were evaluated. Results: H2-haplotype tagging rs8070723-G allele associated with reduced risk of LOAD (odds ratio, OR = 0.90, 95% confidence interval, CI = 0.85-0.95, p = 5.2E-05) with consistent results in the Mayo (OR = 0.81, p = 7.0E-04) and ADGC (OR = 0.89, p = 1.26E-04) cohorts. rs3785883-A allele was also nominally significantly associated with LOAD risk (OR = 1.06, 95% CI = 1.01-1.13, p = 0.034). Haplotype analysis revealed significant global association with LOAD risk in the combined cohort (p = 0.033), with significant association of the H2 haplotype with reduced risk of LOAD as expected (p = 1.53E-04) and suggestive association with additional haplotypes. MAPT SNPs and haplotypes also associated with brain MAPT levels in the cerebellum and temporal cortex of AD subjects with the strongest associations observed for the H2 haplotype and reduced brain MAPT levels (β = -0.16 to -0.20, p = 1.0E-03 to 3.0E-03). Conclusions: These results confirm the previously reported MAPT H2 associations with LOAD risk in two large series, that this haplotype has the strongest effect on brain MAPT expression amongst those tested and identify additional haplotypes with suggestive associations, which require replication in independent series. These biologically congruent results provide compelling evidence to screen the MAPT region for regulatory variants which confer LOAD risk by influencing its brain gene expression
Machine learning in Alzheimer’s disease genetics
: Traditional statistical approaches have advanced our understanding of the genetics of complex diseases, yet are limited to linear additive models. Here we applied machine learning (ML) to genome-wide data from 41,686 individuals in the largest European consortium on Alzheimer's disease (AD) to investigate the effectiveness of various ML algorithms in replicating known findings, discovering novel loci, and predicting individuals at risk. We utilised Gradient Boosting Machines (GBMs), biological pathway-informed Neural Networks (NNs), and Model-based Multifactor Dimensionality Reduction (MB-MDR) models. ML approaches successfully captured all genome-wide significant genetic variants identified in the training set and 22% of associations from larger meta-analyses. They highlight 6 novel loci which replicate in an external dataset, including variants which map to ARHGAP25, LY6H, COG7, SOD1 and ZNF597. They further identify novel association in AP4E1, refining the genetic landscape of the known SPPL2A locus. Our results demonstrate that machine learning methods can achieve predictive performance comparable to classical approaches in genetic epidemiology and have the potential to uncover novel loci that remain undetected by traditional GWAS. These insights provide a complementary avenue for advancing the understanding of AD genetics
- …
