109 research outputs found
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects
Inherited thrombocytopenias are a group of disorders that are characterized by a low platelet count and are sometimes associated with excessive bleeding that ranges from mild to severe. We evaluated 36 unrelated patients and 17 family members displaying thrombocytopenia that were recruited to the UK Genotyping and Phenotyping of Platelets (GAPP) study. All patients had a history of excessive bleeding of unknown etiology. We performed platelet phenotyping and whole-exome sequencing (WES) on all patients and identified mutations in schlafen 14 (SLFN14) in 12 patients from 3 unrelated families. Patients harboring SLFN14 mutations displayed an analogous phenotype that consisted of moderate thrombocytopenia, enlarged platelets, decreased ATP secretion, and a dominant inheritance pattern. Three heterozygous missense mutations were identified in affected family members and predicted to encode substitutions (K218E, K219N, and V220D) within an ATPase-AAA-4, GTP/ATP-binding region of SLFN14. Endogenous SLFN14 expression was reduced in platelets from all patients, and mutant SLFN14 expression was markedly decreased compared with that of WT SLFN14 when overexpressed in transfected cells. Electron microscopy revealed a reduced number of dense granules in affected patients platelets, correlating with a decreased ATP secretion observed in lumiaggregometry studies. These results identify SLFN14 mutations as cause for an inherited thrombocytopenia with excessive bleeding, outlining a fundamental role for SLFN14 in platelet formation and function.</p
The Liverpool alcohol-related liver disease algorithm identifies twice as many emergency admissions compared to standard methods when applied to Hospital Episode Statistics for England
BackgroundEmergency admissions in England for alcohol-related liver disease (ArLD) have increased steadily for decades. Statistics based on administrative data typically focus on the ArLD-specific code as the primary diagnosis and are therefore at risk of excluding ArLD admissions defined by other coding combinations.AimTo deploy the Liverpool ArLD Algorithm (LAA), which accounts for alternative coding patterns (e.g., ArLD secondary diagnosis with alcohol/liver-related primary diagnosis), to national and local datasets in the context of studying trends in ArLD admissions before and during the COVID-19 pandemic.MethodsWe applied the standard approach and LAA to Hospital Episode Statistics for England (2013-21). The algorithm was also deployed at 28 hospitals to discharge coding for emergency admissions during a common 7-day period in 2019 and 2020, in which eligible patient records were reviewed manually to verify the diagnosis and extract data.ResultsNationally, LAA identified approximately 100% more monthly emergency admissions from 2013 to 2021 than the standard method. The annual number of ArLD-specific admissions increased by 30.4%. Of 39,667 admissions in 2020/21, only 19,949 were identified with standard approach, an estimated admission cost of £70 million in under-recorded cases. Within 28 local hospital datasets, 233 admissions were identified using the standard approach and a further 250 locally verified cases using the LAA (107% uplift). There was an 18% absolute increase in ArLD admissions in the seven-day evaluation period in 2020 versus 2019. There were no differences in disease severity or mortality, or in the proportion of admissions with decompensation of cirrhosis or alcoholic hepatitis.ConclusionsThe LAA can be applied successfully to local and national datasets. It consistently identifies approximately 100% more cases than the standard coding approach. The algorithm has revealed the true extent of ArLD admissions. The pandemic has compounded a long-term rise in ArLD admissions and mortality
International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways
Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n1⁄42,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n1⁄43,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombinedo5108) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine–cytokine pathways, for which relevant therapies exist
The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy.
Peer reviewe
Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments
Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests
SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2
Background
Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape.
Methods
We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September–27 September 2021) and 15 (19 October–5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month.
Results
We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8–23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England.
Conclusions
As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals
Increasing Levels of Serum Vitamin D are Associated with Lower Rates of Relapse in Multiple Sclerosis
Sun Exposure across the Life Course Significantly Modulates Early Multiple Sclerosis Clinical Course
Background: Low vitamin D and/or sun exposure have been associated with increased risk of multiple sclerosis (MS) onset. However, comparatively, few studies have prospectively examined associations between these factors and clinical course.Objectives: To evaluate the association of sun exposure parameters and vitamin D levels with conversion to MS and relapse risk in a prospectively monitored cohort of 145 participants followed after a first demyelinating event up to 5-year review (AusLong Study).Methods: Sun exposure prior to and after onset measured by annual questionnaire; ultraviolet radiation (UVR) "load" estimated by location of residence over the life course and ambient UVR levels. Serum 25-hydroxyvitamin D [25(OH)D] concentrations measured at baseline, 2/3-year, and 5-year review. MS conversion and relapse assessed by neurologist assessment and medical record review.Results: Over two-thirds (69%) of those followed to 5-year review (100/145) converted to MS, with a total of 252 relapses. Higher pre-MS onset sun exposure was associated with reduced risk of MS conversion, with internal consistency between measures and dose-response relationships. Analogous associations were also seen with risk of relapse, albeit less strong. No consistent associations were observed between postonset sun exposure and clinical course, however. Notably, those who increased their sun exposure during follow-up had significantly reduced hazards of MS conversion and relapse. Serum 25(OH)D levels and vitamin D supplementation were not associated with conversion to MS or relapse hazard.Conclusion: We found that preonset sun exposure was protective against subsequent conversion to MS and relapses. While consistent associations between postonset sun exposure or serum 25(OH)D level and clinical course were not evident, possibly masked by behavior change, those participants who markedly increased their sun exposure demonstrated a reduced MS conversion and relapse hazard, suggesting beneficial effects of sun exposure on clinical course
- …
