1,891 research outputs found

    A Unified Approach to the Classical Statistical Analysis of Small Signals

    Get PDF
    We give a classical confidence belt construction which unifies the treatment of upper confidence limits for null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem (apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals which are not confidence intervals if the choice is based on the data. We apply the construction to two related problems which have recently been a battle-ground between classical and Bayesian statistics: Poisson processes with background, and Gaussian errors with a bounded physical region. In contrast with the usual classical construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We show that this technique both gives correct coverage and is powerful, while other classical techniques that have been used by neutrino oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with published version. A few small changes, plus the two substantive changes we made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C). It was inconsistent with our actual definition in Sec. VI. 2) "Note added in proof" at end of the Conclusio

    Limits on light WIMPs from the CDEX-1 experiment with a p-type point-contact germanium detector at the China Jingping Underground Laboratory

    Full text link
    We report results of a search for light Dark Matter WIMPs with CDEX-1 experiment at the China Jinping Underground Laboratory, based on 53.9 kg-days of data from a p-type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. The event rate and spectrum above the analysis threshold of 475 eVee are consistent with the understood background model. Part of the allowed regions for WIMP-nucleus coherent elastic scattering at WIMP mass of 6-20 GeV are probed and excluded. Independent of interaction channels, this result contradicts the interpretation that the anomalous excesses of the CoGeNT experiment are induced by Dark Matter, since identical detector techniques are used in both experiments.Comment: 5 pages, 5 figure

    Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg ×{\times} day Data of the CDEX-10 Experiment

    Full text link
    We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 ×1042\times 10^{-42} and 3 ×1036\times 10^{-36} cm2^{2} at a 90\% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass (mχm_{\chi}) of 5 GeV/c2{c}^2 are achieved. The lower reach of mχm_{\chi} is extended to 2 GeV/c2{c}^2.Comment: 5 pages, 4 figure

    JLab Measurement of the 4^4He Charge Form Factor at Large Momentum Transfers

    Get PDF
    The charge form factor of ^4He has been extracted in the range 29 fm2^{-2} Q277\le Q^2 \le 77 fm2^{-2} from elastic electron scattering, detecting 4^4He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q2Q^2 range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.Comment: 4 pages, 2 figure

    Observation of χc1\chi_{c1} decays into vector meson pairs ϕϕ\phi\phi, ωω\omega\omega, and ωϕ\omega\phi

    Get PDF
    Decays of χc1\chi_{c1} to vector meson pairs ϕϕ\phi\phi, ωω\omega\omega and ωϕ\omega\phi are observed for the first time using (106±4)×106(106\pm4)\times 10^6 \psip events accumulated at the BESIII detector at the BEPCII e+ee^+e^- collider. The branching fractions are measured to be (4.4±0.3±0.5)×104(4.4\pm 0.3\pm 0.5)\times 10^{-4}, (6.0±0.3±0.7)×104(6.0\pm 0.3\pm 0.7)\times 10^{-4}, and (2.2±0.6±0.2)×105(2.2\pm 0.6\pm 0.2)\times 10^{-5}, for χc1ϕϕ\chi_{c1}\to \phi\phi, ωω\omega\omega, and ωϕ\omega\phi, respectively. The observation of χc1\chi_{c1} decays into a pair of vector mesons ϕϕ\phi\phi, ωω\omega\omega and ωϕ\omega\phi indicates that the hadron helicity selection rule is significantly violated in χcJ\chi_{cJ} decays. In addition, the measurement of χcJωϕ\chi_{cJ}\to \omega\phi gives the rate of doubly OZI-suppressed decay. Branching fractions for χc0\chi_{c0} and χc2\chi_{c2} decays into other vector meson pairs are also measured with improved precision.Comment: 4 pages, 2 figure

    Evidence for e+eγχc1,2e^+e^-\to\gamma\chi_{c1, 2} at center-of-mass energies from 4.009 to 4.360 GeV

    Full text link
    Using data samples collected at center-of-mass energies of s\sqrt{s} = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process e+eγχcJe^+e^-\to\gamma\chi_{cJ} (J=0,1,2)(J = 0, 1, 2) and find evidence for e+eγχc1e^+e^-\to\gamma\chi_{c1} and e+eγχc2e^+e^-\to\gamma\chi_{c2} with statistical significances of 3.0σ\sigma and 3.4σ\sigma, respectively. The Born cross sections σB(e+eγχcJ)\sigma^{B}(e^+e^-\to\gamma\chi_{cJ}), as well as their upper limits at the 90% confidence level are determined at each center-of-mass energy.Comment: 8 pages, 7 figures, 3 table

    Measurement of the Target-Normal Single-Spin Asymmetry in Quasi-Elastic Scattering from the Reaction 3^3He(e,e)^\uparrow(e,e^\prime)

    Full text link
    We report the first measurement of the target single-spin asymmetry, AyA_y, in quasi-elastic scattering from the inclusive reaction 3^3He(e,e)^{\uparrow}(e,e^\prime) on a 3^3He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero AyA_y can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q2=Q^{2}= 0.13, 0.46 and 0.97 GeV2^{2}. These measurements demonstrate, for the first time, that the 3^3He asymmetry is clearly non-zero and negative with a statistical significance of (8-10)σ\sigma. Using measured proton-to-3^{3}He cross-section ratios and the effective polarization approximation, neutron asymmetries of -(1-3)% were obtained. The neutron asymmetry at high Q2Q^2 is related to moments of the Generalized Parton Distributions (GPDs). Our measured neutron asymmetry at Q2=0.97Q^2=0.97 GeV2^2 agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions

    Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized 3^3He target

    Full text link
    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3^3He target was performed at Jefferson Lab in the kinematic region of 0.16<x<0.350.16<x<0.35 and 1.4<Q2<2.71.4<Q^2<2.7 GeV2{\rm GeV^2}. The pretzelosity asymmetries on 3^3He, which can be expressed as the convolution of the h1Th^\perp_{1T} transverse momentum dependent distribution functions and the Collins fragmentation functions in the leading order, were measured for the first time. Using the effective polarization approximation, we extracted the corresponding neutron asymmetries from the measured 3^3He asymmetries and cross-section ratios between the proton and 3^3He. Our results show that for both π±\pi^{\pm} on 3^3He and on the neutron the pretzelosity asymmetries are consistent with zero within experimental uncertainties.Comment: 6 pages, 3 figures; enlarged the legends in Fig.3; added 3 citation

    Single Spin Asymmetries in Charged Kaon Production from Semi-Inclusive Deep Inelastic Scattering on a Transversely Polarized 3He^3{\rm{He}} Target

    Full text link
    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He^3{\rm{He}} target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1<<xbjx_{bj}<<0.4 for K+K^{+} and KK^{-} production. While the Collins and Sivers moments for K+K^{+} are consistent with zero within the experimental uncertainties, both moments for KK^{-} favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. While the K+K^{+} Sivers moments are consistent with the prediction, the KK^{-} results differ from the prediction at the 2-sigma level.Comment: 6 pages, 3 figure

    A Precision Measurement of the Neutron Twist-3 Matrix Element d2nd_2^n: Probing Color Forces

    Full text link
    Double-spin asymmetries and absolute cross sections were measured at large Bjorken xx (0.25 x \le x \le 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3^3He target. In this dedicated experiment, the spin structure function g2g_2 on 3^3He was determined with precision at large xx, and the neutron twist-three matrix element d2nd_2^n was measured at \left of 3.21 and 4.32 GeV2^2/c2c^2, with an absolute precision of about 10510^{-5}. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at \left = 5 GeV2^2/c2c^2. Combining d2nd_2^n and a newly extracted twist-four matrix element, f2nf_2^n, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 30 MeV/fm in magnitude.Comment: Corrected a typo in the author list and Figure 1 legend. 6 pages, 2 figures, 2 table
    corecore