2,089 research outputs found

    RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations

    Get PDF
    Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the MS\overline{\rm MS} scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is 483×9648^3\times96 and the inverse spacing 1/a=1.730(4) GeV1/a = 1.730(4) {\rm~GeV}.Comment: Minor changes and updates of Figure 10 and 15 to be more clea

    Meson Mass Decomposition

    Get PDF
    Hadron masses can be decomposed as a sum of components which are defined through hadronic matrix elements of QCD operators. The components consist of the quark mass term, the quark energy term, the glue energy term and the trace anomaly term. We calculate these components of mesons with lattice QCD for the first time. The calculation is carried out with overlap fermion on 2+12+1 flavor domain-wall fermion gauge configurations. We confirm that 50%\sim 50\% of the light pion mass comes from the quark mass and 10%\sim 10\% comes from the quark energy, whereas, the contributions are found to be the other way around for the ρ\rho mass. The combined glue components contribute 4050%\sim 40 - 50\% for both mesons. It is interesting to observe that the quark mass contribution to the mass of the vector meson is almost linear in quark mass over a large quark mass region below the charm quark mass. For heavy mesons, the quark mass term dominates the masses, while the contribution from the glue components is about 400500400\sim500 MeV for the heavy pseudoscalar and vector mesons. The charmonium hyperfine splitting is found to be dominated by the quark energy term which is consistent with the quark potential model.Comment: 7 Pages, 4 figures, contribution to the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, Columbia University, New York, NY, US

    Non-perturbative renormalization of overlap quark bilinears on 2+1-flavor domain wall fermion configurations

    Get PDF
    We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.Comment: 26 pages, 17 figures. More discussions on O(4) breaking effects, and on the perturbative running and a^2p^2 extrapolation of Zs. A subsection for the calculation of the step scaling function of quark mass is added. References added. Version to appear in PR

    A Lattice Study of (Dˉ1D)±(\bar{D}_1 D^{*})^\pm Near-threshold Scattering

    Full text link
    In this exploratory lattice study, low-energy near threshold scattering of the (Dˉ1D)±(\bar{D}_1 D^{*})^\pm meson system is analyzed using lattice QCD with Nf=2N_f=2 twisted mass fermion configurations. Both s-wave (JP=0J^P=0^-) and p-wave (JP=1+J^P=1^+) channels are investigated. It is found that the interaction between the two charmed mesons is attractive near the threshold in both channels. This calculation provides some hints in the searching of resonances or bound states around the threshold of (Dˉ1D)±(\bar{D}_1 D^{*})^\pm system.Comment: 20 pages, 15 figures, matches the version on PR

    Spectrum and Bethe-Salpeter amplitudes of Ω\Omega baryons from lattice QCD

    Full text link
    The Ω\Omega baryons with JP=3/2±,1/2±J^P=3/2^\pm, 1/2^\pm are studied on the lattice in the quenched approximation. Their mass levels are ordered as M3/2+<M3/2M1/2<M1/2+M_{3/2^+}<M_{3/2^-}\approx M_{1/2^-}<M_{1/2^+}, as is expected from the constituent quark model. The mass values are also close to those of the four Ω\Omega states observed in experiments, respectively. We calculate the Bethe-Salpeter amplitudes of Ω(3/2+)\Omega(3/2^+) and Ω(1/2+)\Omega(1/2^+) and find there is a radial node for the Ω(1/2+)\Omega(1/2^+) Bethe-Salpeter amplitude, which may imply that Ω(1/2+)\Omega(1/2^+) is an orbital excitation of Ω\Omega baryons as a member of the (D,LNP)=(70,02+)(D,L_N^P)=(70,0_2^+) supermultiplet in the SU(6)O(3)SU(6)\bigotimes O(3) quark model description. Our results are helpful for identifying the quantum number of experimentally observed Ω\Omega states.Comment: 7 pages, 5 figures, submitted to Chinese Physics

    A way to measure the water quality of the LHAASO-WCDA with cosmic muon signals

    Full text link
    The Large High Altitude Air Shower Observatory (LHAASO) is to be built at Daocheng, Sichuan Province, China. As one of the major components of the LHAASO project, a Water Cherenkov Detector Array (WCDA), with an area of 78,000~m2\rm m^{2}, contains 350,000~tons of purified water. The water transparency and its stability are critical for successful long-term operation of this project. To gain full knowledge of the water Cherenkov technique and investigate the engineering issues, a 9-cell detector array has been built at the Yangbajing site, Tibet, China. With the help of the distribution of single cosmic muon signals, the monitoring and measurement of water transparency are studied. The results show that a precision of several percent can be obtained for the attenuation length measurement, which satisfies the requirements of the experiment. In the near future, this method could be applied to the LHAASO-WCDA project

    Two Photon Decays of ηc\eta_c from Lattice QCD

    Full text link
    We present an exploratory lattice study for the two-photon decay of ηc\eta_c using Nf=2N_f=2 twisted mass lattice QCD gauge configurations generated by the European Twisted Mass Collaboration. Two different lattice spacings of a=0.067a=0.067fm and a=0.085a=0.085fm are used in the study, both of which are of physical size of 2fmfm. The decay widths are found to be 1.025(5)1.025(5)KeV for the coarser lattice and 1.062(5)1.062(5)KeV for the finer lattice respectively where the errors are purely statistical. A naive extrapolation towards the continuum limit yields Γ1.122(14)\Gamma\simeq 1.122(14)KeV which is smaller than the previous quenched result and most of the current experimental results. Possible reasons are discussed.Comment: 13 pages, 7 figures; matches the published versio

    Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan

    Get PDF
    Studies indicate that asymptomatic infections do indeed occur frequently for both seasonal and pandemic influenza, accounting for about one-third of influenza infections. Studies carried out during the 2009 pH1N1 pandemic have found significant antibody response against seasonal H1N1 and H3N2 vaccine strains in schoolchildren receiving only pandemic H1N1 monovalent vaccine, yet reported either no symptoms or only mild symptoms

    Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-Line Region

    Full text link
    This paper reports results of the third-year campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs) between 2014-2015. Ten new targets were selected from quasar sample of Sloan Digital Sky Survey (SDSS), which are generally more luminous than the SEAMBH candidates in last two years. Hβ\beta lags (τHβ\tau_{_{\rm H\beta}}) in five of the 10 quasars have been successfully measured in this monitoring season. We find that the lags are generally shorter, by large factors, than those of objects with same optical luminosity, in light of the well-known RHβL5100R_{_{\rm H\beta}}-L_{5100} relation. The five quasars have dimensionless accretion rates of M˙=10103\dot{\mathscr{M}}=10-10^3. Combining measurements of the previous SEAMBHs, we find that the reduction of Hβ\beta lags tightly depends on accretion rates, τHβ/τRLM˙0.42\tau_{_{\rm H\beta}}/\tau_{_{R-L}}\propto\dot{\mathscr{M}}^{-0.42}, where τRL\tau_{_{R-L}} is the Hβ\beta lag from the normal RHβL5100R_{_{\rm H\beta}}-L_{5100} relation. Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line region: RHβ=α144β1min[1,(M˙/M˙c)γ1]R_{_{\rm H\beta}}=\alpha_1\ell_{44}^{\beta_1}\,\min\left[1,\left(\dot{\mathscr{M}}/\dot{\mathscr{M}}_c\right)^{-\gamma_1}\right], where 44=L5100/1044erg s1\ell_{44}=L_{5100}/10^{44}\,\rm erg~s^{-1} is 5100 \AA\ continuum luminosity, and coefficients of α1=(29.62.8+2.7)\alpha_1=(29.6_{-2.8}^{+2.7}) lt-d, β1=0.560.03+0.03\beta_1=0.56_{-0.03}^{+0.03}, γ1=0.520.16+0.33\gamma_1=0.52_{-0.16}^{+0.33} and M˙c=11.196.22+2.29\dot{\mathscr{M}}_c=11.19_{-6.22}^{+2.29}. This relation is applicable to AGNs over a wide range of accretion rates, from 10310^{-3} to 10310^3. Implications of this new relation are briefly discussed.Comment: 15 pages, 9 figures, 5 table, accepted for publication in The Astrophysical Journa

    Centrality categorization for R_{p(d)+A} in high-energy collisions

    Full text link
    High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore