1,203 research outputs found

    Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg ×{\times} day Data of the CDEX-10 Experiment

    Full text link
    We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 ×1042\times 10^{-42} and 3 ×1036\times 10^{-36} cm2^{2} at a 90\% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass (mχm_{\chi}) of 5 GeV/c2{c}^2 are achieved. The lower reach of mχm_{\chi} is extended to 2 GeV/c2{c}^2.Comment: 5 pages, 4 figure

    A Unified Approach to the Classical Statistical Analysis of Small Signals

    Get PDF
    We give a classical confidence belt construction which unifies the treatment of upper confidence limits for null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem (apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals which are not confidence intervals if the choice is based on the data. We apply the construction to two related problems which have recently been a battle-ground between classical and Bayesian statistics: Poisson processes with background, and Gaussian errors with a bounded physical region. In contrast with the usual classical construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We show that this technique both gives correct coverage and is powerful, while other classical techniques that have been used by neutrino oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with published version. A few small changes, plus the two substantive changes we made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C). It was inconsistent with our actual definition in Sec. VI. 2) "Note added in proof" at end of the Conclusio

    Observation of χc1\chi_{c1} decays into vector meson pairs ϕϕ\phi\phi, ωω\omega\omega, and ωϕ\omega\phi

    Get PDF
    Decays of χc1\chi_{c1} to vector meson pairs ϕϕ\phi\phi, ωω\omega\omega and ωϕ\omega\phi are observed for the first time using (106±4)×106(106\pm4)\times 10^6 \psip events accumulated at the BESIII detector at the BEPCII e+ee^+e^- collider. The branching fractions are measured to be (4.4±0.3±0.5)×104(4.4\pm 0.3\pm 0.5)\times 10^{-4}, (6.0±0.3±0.7)×104(6.0\pm 0.3\pm 0.7)\times 10^{-4}, and (2.2±0.6±0.2)×105(2.2\pm 0.6\pm 0.2)\times 10^{-5}, for χc1ϕϕ\chi_{c1}\to \phi\phi, ωω\omega\omega, and ωϕ\omega\phi, respectively. The observation of χc1\chi_{c1} decays into a pair of vector mesons ϕϕ\phi\phi, ωω\omega\omega and ωϕ\omega\phi indicates that the hadron helicity selection rule is significantly violated in χcJ\chi_{cJ} decays. In addition, the measurement of χcJωϕ\chi_{cJ}\to \omega\phi gives the rate of doubly OZI-suppressed decay. Branching fractions for χc0\chi_{c0} and χc2\chi_{c2} decays into other vector meson pairs are also measured with improved precision.Comment: 4 pages, 2 figure

    Evidence for e+eγχc1,2e^+e^-\to\gamma\chi_{c1, 2} at center-of-mass energies from 4.009 to 4.360 GeV

    Full text link
    Using data samples collected at center-of-mass energies of s\sqrt{s} = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process e+eγχcJe^+e^-\to\gamma\chi_{cJ} (J=0,1,2)(J = 0, 1, 2) and find evidence for e+eγχc1e^+e^-\to\gamma\chi_{c1} and e+eγχc2e^+e^-\to\gamma\chi_{c2} with statistical significances of 3.0σ\sigma and 3.4σ\sigma, respectively. The Born cross sections σB(e+eγχcJ)\sigma^{B}(e^+e^-\to\gamma\chi_{cJ}), as well as their upper limits at the 90% confidence level are determined at each center-of-mass energy.Comment: 8 pages, 7 figures, 3 table

    Improved measurement of the absolute branching fraction of D+Kˉ0μ+νμD^{+}\rightarrow \bar K^0 \mu^{+}\nu_{\mu}

    Get PDF
    By analyzing 2.93 fb1^{-1} of data collected at s=3.773\sqrt s=3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D+Kˉ0μ+νμ)=(8.72±0.07stat.±0.18sys.)%{\mathcal B}(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=(8.72 \pm 0.07_{\rm stat.} \pm 0.18_{\rm sys.})\%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D0Kμ+νμ){\mathcal B}(D^0\to K^-\mu^+\nu_\mu), B(D+Kˉ0e+νe){\mathcal B}(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e}), and the lifetimes of the D0D^0 and D+D^+ mesons with the value of B(D+Kˉ0μ+νμ){\mathcal B}(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu}) measured in this work, we determine the following ratios of partial widths: Γ(D0Kμ+νμ)/Γ(D+Kˉ0μ+νμ)=0.963±0.044\Gamma(D^0\to K^-\mu^+\nu_\mu)/\Gamma(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=0.963\pm0.044 and Γ(D+Kˉ0μ+νμ)/Γ(D+Kˉ0e+νe)=0.988±0.033\Gamma(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu})/\Gamma(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e})=0.988\pm0.033.Comment: 9 pages; 8 figure

    Precision measurement of CPCP violation in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays

    Get PDF
    The time-dependent CPCP asymmetry in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays is measured using pppp collision data, corresponding to an integrated luminosity of 3.03.0fb1^{-1}, collected with the LHCb detector at centre-of-mass energies of 77 and 88TeV. In a sample of 96 000 Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays, the CPCP-violating phase ϕs\phi_s is measured, as well as the decay widths ΓL\Gamma_{L} and ΓH\Gamma_{H} of the light and heavy mass eigenstates of the Bs0Bˉs0B_s^0-\bar{B}_s^0 system. The values obtained are ϕs=0.058±0.049±0.006\phi_s = -0.058 \pm 0.049 \pm 0.006 rad, Γs(ΓL+ΓH)/2=0.6603±0.0027±0.0015\Gamma_s \equiv (\Gamma_{L}+\Gamma_{H})/2 = 0.6603 \pm 0.0027 \pm 0.0015ps1^{-1}, andΔΓsΓLΓH=0.0805±0.0091±0.0032\Delta\Gamma_s \equiv \Gamma_{L} - \Gamma_{H} = 0.0805 \pm 0.0091 \pm 0.0032ps1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0J/ψπ+πB_s^{0} \to J/\psi \pi^+\pi^- decays gives ϕs=0.010±0.039\phi_s = -0.010 \pm 0.039 rad. All measurements are in agreement with the Standard Model predictions. For the first time the phase ϕs\phi_s is measured independently for each polarisation state of the K+KK^+K^- system and shows no evidence for polarisation dependence.Comment: 6 figure

    Experimental studies of e + e −→ some charmless processes containing K S 0 at s=3.773\sqrt{s}=3.773 and 3.65 GeV

    Get PDF

    Searches for supersymmetry using the M-T2 variable in hadronic events produced in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the W+W− cross section in pp collisions at s√=7 TeV and limits on anomalous WWγ and WWZ couplings

    Get PDF
    A measurement of W+W− production in pp collisions at s√=7 TeV is presented. The data were collected with the CMS detector at the LHC, and correspond to an integrated luminosity of 4.92±0.11 fb−1. The W+W− candidates consist of two oppositely charged leptons, electrons or muons, accompanied by large missing transverse energy. The W+W− production cross section is measured to be 52.4±2.0 (stat.)±4.5 (syst.)±1.2 (lum.) pb. This measurement is consistent with the standard model prediction of 47.0±2.0 pb at next-to-leading order. Stringent limits on the WWγ and WWZ anomalous triple gauge-boson couplings are set
    corecore