53,232 research outputs found
Non-perturbative renormalization of overlap quark bilinears on 2+1-flavor domain wall fermion configurations
We present renormalization constants of overlap quark bilinear operators on
2+1-flavor domain wall fermion configurations. This setup is being used by the
chiQCD collaboration in calculations of physical quantities such as strangeness
in the nucleon and the strange and charm quark masses. The scale independent
renormalization constant for the axial vector current is computed using the
Ward Identity. The renormalization constants for scalar, pseudoscalar and
vector current are calculated in the RI-MOM scheme. Results in the MS-bar
scheme are also given. The step scaling function of quark masses in the RI-MOM
scheme is computed as well. The analysis uses, in total, six different
ensembles of three sea quarks each on two lattices with sizes 24^3x64 and
32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.Comment: 26 pages, 17 figures. More discussions on O(4) breaking effects, and
on the perturbative running and a^2p^2 extrapolation of Zs. A subsection for
the calculation of the step scaling function of quark mass is added.
References added. Version to appear in PR
Spectrum and Bethe-Salpeter amplitudes of baryons from lattice QCD
The baryons with are studied on the lattice
in the quenched approximation. Their mass levels are ordered as
, as is expected from the
constituent quark model. The mass values are also close to those of the four
states observed in experiments, respectively. We calculate the
Bethe-Salpeter amplitudes of and and find there
is a radial node for the Bethe-Salpeter amplitude, which may
imply that is an orbital excitation of baryons as a
member of the supermultiplet in the quark model description. Our results are helpful for identifying the
quantum number of experimentally observed states.Comment: 7 pages, 5 figures, submitted to Chinese Physics
A Lattice Study of Near-threshold Scattering
In this exploratory lattice study, low-energy near threshold scattering of
the meson system is analyzed using lattice QCD with
twisted mass fermion configurations. Both s-wave () and p-wave
() channels are investigated. It is found that the interaction between
the two charmed mesons is attractive near the threshold in both channels. This
calculation provides some hints in the searching of resonances or bound states
around the threshold of system.Comment: 20 pages, 15 figures, matches the version on PR
Standard-model prediction for direct CP violation in decay
We report the first lattice QCD calculation of the complex kaon decay
amplitude with physical kinematics, using a lattice
volume and a single lattice spacing , with GeV. We find
Re GeV and Im GeV, where the first error is statistical
and the second systematic. The first value is in approximate agreement with the
experimental result: Re GeV while the second
can be used to compute the direct CP violating ratio
Re, which is
below the experimental value . The real
part of is CP conserving and serves as a test of our method while the
result for Re provides a new test of the
standard-model theory of CP violation, one which can be made more accurate with
increasing computer capability.Comment: 9 pages, 3 figures. Updated to match published versio
Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-Line Region
This paper reports results of the third-year campaign of monitoring
super-Eddington accreting massive black holes (SEAMBHs) in active galactic
nuclei (AGNs) between 2014-2015. Ten new targets were selected from quasar
sample of Sloan Digital Sky Survey (SDSS), which are generally more luminous
than the SEAMBH candidates in last two years. H lags () in five of the 10 quasars have been successfully measured in this
monitoring season. We find that the lags are generally shorter, by large
factors, than those of objects with same optical luminosity, in light of the
well-known relation. The five quasars have
dimensionless accretion rates of . Combining
measurements of the previous SEAMBHs, we find that the reduction of H
lags tightly depends on accretion rates, , where
is the H lag from the normal relation.
Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line
region: ,
where is 5100 \AA\ continuum
luminosity, and coefficients of lt-d,
, and
. This relation is applicable to
AGNs over a wide range of accretion rates, from to .
Implications of this new relation are briefly discussed.Comment: 15 pages, 9 figures, 5 table, accepted for publication in The
Astrophysical Journa
Modelling of the ICRF induced E x B convection in the scrape-off-layer of ASDEX Upgrade
In magnetic controlled fusion devices, plasma heating with radio-frequency (RF) waves in the ion cyclotron (IC) range of frequency relies on the electric field of the fast wave to heat the plasma. However, the slow wave can be generated parasitically. The electric field of the slow wave can induce large biased plasma potential (DC potential) through sheath rectification. The rapid variation of the rectified potential across the equilibrium magnetic field can cause significant convective transport (E x B drifts) in the scrape-off layer (SOL). In order to understand this phenomenon and reproduce the experiments, 3D realistic simulations are carried out with the 3D edge plasma fluid and kinetic neutral code EMC3-Eirene in ASDEX Upgrade. For this, we have added the prescribed drift terms to the EMC3 equations and verified the 3D code results against the analytical ones in cylindrical geometry. The edge plasma potential derived from the experiments is used to calculate the drift velocities, which are then treated as input fields in the code to obtain the final density distributions. Our simulation results are in good agreement with the experiments
Two Photon Decays of from Lattice QCD
We present an exploratory lattice study for the two-photon decay of
using twisted mass lattice QCD gauge configurations generated by the
European Twisted Mass Collaboration. Two different lattice spacings of
fm and fm are used in the study, both of which are of
physical size of 2. The decay widths are found to be KeV for the
coarser lattice and KeV for the finer lattice respectively where the
errors are purely statistical. A naive extrapolation towards the continuum
limit yields KeV which is smaller than the previous
quenched result and most of the current experimental results. Possible reasons
are discussed.Comment: 13 pages, 7 figures; matches the published versio
A Unified Approach to the Classical Statistical Analysis of Small Signals
We give a classical confidence belt construction which unifies the treatment
of upper confidence limits for null results and two-sided confidence intervals
for non-null results. The unified treatment solves a problem (apparently not
previously recognized) that the choice of upper limit or two-sided intervals
leads to intervals which are not confidence intervals if the choice is based on
the data. We apply the construction to two related problems which have recently
been a battle-ground between classical and Bayesian statistics: Poisson
processes with background, and Gaussian errors with a bounded physical region.
In contrast with the usual classical construction for upper limits, our
construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist
coverage greater than the stated confidence) in the Gaussian case and reduce it
to a level dictated by discreteness in the Poisson case. We generalize the
method in order to apply it to analysis of experiments searching for neutrino
oscillations. We show that this technique both gives correct coverage and is
powerful, while other classical techniques that have been used by neutrino
oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with
published version. A few small changes, plus the two substantive changes we
made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C).
It was inconsistent with our actual definition in Sec. VI. 2) "Note added in
proof" at end of the Conclusio
Perfluorodecalin and bone regeneration
Perfluorodecalin (PFD) is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration
Motor onset and diagnosis in Huntington disease using the diagnostic confidence level
Huntington disease (HD) is a neurodegenerative disorder characterized by motor dysfunction, cognitive deterioration, and psychiatric symptoms, with progressive motor impairments being a prominent feature. The primary objectives of this study are to delineate the disease course of motor function in HD, to provide estimates of the onset of motor impairments and motor diagnosis, and to examine the effects of genetic and demographic variables on the progression of motor impairments. Data from an international multisite, longitudinal observational study of 905 prodromal HD participants with cytosine-adenine-guanine (CAG) repeats of at least 36 and with at least two visits during the followup period from 2001 to 2012 was examined for changes in the diagnostic confidence level from the Unified Huntington's Disease Rating Scale. HD progression from unimpaired to impaired motor function, as well as the progression from motor impairment to diagnosis, was associated with the linear effect of age and CAG repeat length. Specifically, for every 1-year increase in age, the risk of transition in diagnostic confidence level increased by 11% (95% CI 7-15%) and for one repeat length increase in CAG, the risk of transition in diagnostic confidence level increased by 47% (95% CI 27-69%). Findings show that CAG repeat length and age increased the likelihood of the first onset of motor impairment as well as the age at diagnosis. Results suggest that more accurate estimates of HD onset age can be obtained by incorporating the current status of diagnostic confidence level into predictive models
- …
