2,826 research outputs found
Deep learning for interference cancellation in non-orthogonal signal based optical communication systems
Non-orthogonal waveforms are groups of signals, which improve spectral efficiency but at the cost of interference. A recognized waveform, termed spectrally efficient frequency division multiplexing (SEFDM), which was a technique initially proposed for wireless systems, has been extensively studied in 60 GHz millimeter wave communications, optical access network design and long haul optical fiber transmission. Experimental demonstrations have shown the advantages of SEFDM in its bandwidth saving, data rate improvement, power efficiency improvement and transmission distance extension compared to conventional orthogonal communication techniques. However, the achieved success of SEFDM is at the cost of complex signal processing for the mitigation of the self-created inter carrier interference (ICI). Thus, a low complexity interference cancellation approach is in urgent need. Recently, deep learning has been applied in optical communication systems to compensate for linear and non-linear distortions in orthogonal frequency division multiplexing (OFDM) signals. The multiple processing layers of deep neural networks (DNN) can simplify signal processing models and can efficiently solve un-deterministic problems. However, there are no reports on the use of deep learning to deal with interference in non-orthogonal signals. DNN can learn complex interference features using backpropagation mechanism. This work will present our investigations on the performance improvement of interference cancellation for the non-orthogonal signal using various deep neural networks. Simulation results show that the interference within SEFDM signals can be mitigated efficiently via using properly designed neural networks. It also indicates a high correlation between neural networks and signal waveforms. It verifies that in order to achieve the optimal performance, all the neurons at each layer have to be connected. Partially connected neural networks cannot learn complete interference and therefore cannot recover signals efficiently. This work paves the way for the research of simplifying neural networks design via signal waveform optimization
Slot error rate performance of DH-PIM with symbol retransmission for optical wireless links
In this paper we introduce the dual-header pulse interval modulation (DH-PIM) technique employing a simple retransmission coupled with a majority decision detection scheme at the receiver. We analytically investigate the slot error rate (SER) performance and compare results with simulated data for the symbol retransmissions rates of three, four and five, showing a good agreement. We demonstrate that the proposed scheme significantly reduces the SER compared with the standard single symbol transmission system, with retransmission rate of five offering the highest code gain of 5 dB
Minimizing the effect of sinusoidal trends in detrended fluctuation analysis
The detrended fluctuation analysis (DFA) [Peng et al., 1994] and its
extensions (MF-DFA) [Kantelhardt et al., 2002] have been used extensively to
determine possible long-range correlations in self-affine signals. While the
DFA has been claimed to be a superior technique, recent reports have indicated
its susceptibility to trends in the data. In this report, a smoothing filter is
proposed to minimize the effect of sinusoidal trends and distortion in the
log-log plots obtained by DFA and MF-DFA techniques
Is a multiple excitation of a single atom equivalent to a single excitation of an ensemble of atoms?
Recent technological advances have enabled to isolate, control and measure
the properties of a single atom, leading to the possibility to perform
statistics on the behavior of single quantum systems. These experiments have
enabled to check a question which was out of reach previously: Is the
statistics of a repeatedly excitation of an atom N times equivalent to a single
excitation of an ensemble of N atoms? We present a new method to analyze
quantum measurements which leads to the postulation that the answer is most
probably no. We discuss the merits of the analysis and its conclusion.Comment: 3 pages, 3 figure
Reliable scaling exponent estimation of long-range correlated noise in the presence of random spikes
Detrended fluctuation analysis (DFA) has been used widely to determine
possible long-range correlations in data obtained from diverse settings. In a
recent study [1], uncorrelated random spikes superimposed on the long-range
correlated noise (LR noise) were found to affect DFA scaling exponent
estimates. In this brief communication, singular-value decomposition (SVD)
filter is proposed to minimize the effect random spikes superimposed on LR
noise, thus facilitating reliable estimation of the scaling exponents. The
effectiveness of the proposed approach is demonstrated on random spikes sampled
from normal and uniform distributions.Comment: 36 Pages, 20 Figure
Quantum storage on subradiant states in an extended atomic ensemble
A scheme for coherent manipulation of collective atomic states is developed
such that total subradiant states, in which spontaneous emission is suppressed
into all directions due to destructive interference between neighbor atoms, can
be created in an extended atomic ensemble. The optimal conditions for creation
of such states and suitability of them for quantum storage are discussed. It is
shown that in order to achieve the maximum signal-to-noise ratio the shape of a
light pulse to be stored and reconstructed using a homogeneously broadened
absorbtion line of an atomic system should be a time-reversed regular part of
the response function of the system. In the limit of high optical density, such
pulses allow one to prepare collective subradiant atomic states with near flat
spatial distribution of the atomic excitation in the medium.Comment: V2: considerably revised (title, text). V3: minor changes - final
version as published in PR
Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels
Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing
(OFDM) receiver designs for underwater acoustic
(UWA) channels with user- and/or path-specific Doppler scaling
distortions. The scenario is motivated by the cooperative communications
framework, where distributed transmitter/receiver
pairs may experience significantly different Doppler distortions, as
well as by the single-user scenarios, where distinct Doppler scaling
factors may exist among different propagation paths. The conventional
approach of front–end resampling that corrects for common
Doppler scalingmay not be appropriatein such scenarios, rendering
a post-fast-Fourier-transform (FFT) signal that is contaminated by
user- and/or path-specific intercarrier interference. To counteract
this problem, we propose a family of front–end receiver structures
thatutilizemultiple-resampling (MR)branches,eachmatched to the
Doppler scaling factor of a particular user and/or path. Following
resampling, FFT modules transform the Doppler-compensated
signals into the frequency domain for further processing through
linear or nonlinear detection schemes. As part of the overall receiver
structure, a gradient–descent approachis also proposed to refine the
channel estimates obtained by standard sparse channel estimators.
The effectiveness and robustness of the proposed receivers are
demonstrated via simulations, as well as emulations based on real
data collected during the 2010 Mobile Acoustic Communications
Experiment (MACE10, Martha’s Vineyard, MA) and the 2008
Kauai Acomms MURI (KAM08, Kauai, HI) experiment
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic
enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in
regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is
transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73,
025401 (2006)]. For the first time, a low phase velocity electron acoustic wave
(EAW) is seen developing from the self-consistent Raman physics. Backscatter of
the pump laser off the EAW fluctuations is reported and referred to as electron
acoustic Thomson scatter. This light is similar in wavelength to, although much
lower in amplitude than, the reflected light between the pump and SRBS
wavelengths observed in single hot spot experiments, and previously interpreted
as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev.
Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched
frequency for electron acoustic scatter, and therefore the EAW is not produced
by it. The beating of different beam acoustic modes is proposed as the EAW
excitation mechanism, and is called beam acoustic decay. Supporting evidence
for this process, including bispectral analysis, is presented. The linear
electrostatic modes, found by projecting the numerical distribution function
onto a Gauss-Hermite basis, include beam acoustic modes (some of which are
unstable even without parametric coupling to light waves) and a strongly-damped
EAW similar to the observed one. This linear EAW results from non-Maxwellian
features in the electron distribution, rather than nonlinearity due to electron
trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006
A Simple Generalization of the CDMA Reverse Link Pole Capacity Formula
Abstract—A formula that computes the maximum number of users supported per base station in a cellular radio network is generalized to consider the frequency reuse number and arbitrary processing gains. The generalization quantifies a cost associated with in-cell interference by accounting for the lack of interference from the desired user on the total interference and by considering the impact of the frequency reuse number on the out-of-cell interference. This interference cost results in an increase in the received Eb/Io relative to FDMA which should be weighted against a reduction in the Eb/Io requirement resulting from using CDMA. Index Terms—Discount, markup, template. I
Effect of coarse-graining on detrended fluctuation analysis
Several studies have investigated the scaling behavior in naturally occurring
biological and physical processes using techniques such as detrended
fluctuation analysis (DFA). Data acquisition is an inherent part of these
studies and maps the continuous process into digital data. The resulting
digital data is discretized in amplitude and time, and shall be referred to as
coarse-grained realization in the present study. Since coarse-graining precedes
scaling exponent analysis, it is important to understand its effects on scaling
exponent estimators such as DFA. In this brief communication, k-means
clustering is used to generate coarse-grained realizations of data sets with
different correlation properties, namely: anti-correlated noise, long-range
correlated noise and uncorrelated noise. It is shown that the coarse-graining
can significantly affect the scaling exponent estimates. It is also shown that
scaling exponent can be reliably estimated even at low levels of
coarse-graining and the number of the clusters required varies across the data
sets with different correlation properties.Comment: 21 Pages, 10 Figures. Physica A, 2005 (in press
- …
