1,460 research outputs found
Automatic structures for semigroup constructions
We survey results concerning automatic structures for semigroup
constructions, providing references and describing the corresponding automatic
structures. The constructions we consider are: free products, direct products,
Rees matrix semigroups, Bruck-Reilly extensions and wreath products.Comment: 22 page
A new approach to scoring systems to improve identification of acute medical admissions that will require critical care
Removal of the intensive care unit (ICU) at the Vale of Leven Hospital mandated the identification and transfer out of those acute medical admissions with a high risk of requiring ICU. The aim of the study was to develop triaging tools that identified such patients and compare them with other scoring systems. The methodology included a retrospective analysis of physiological and arterial gas measurements from 1976 acute medical admissions produced PREEMPT-1 (PRE-critical Emergency Medical Patient Triage). A simpler one for ambulance use (PREAMBLE-1 [PRE-Admission Medical Blue-Light Emergency]) was produced by the addition of peripheral oxygen saturation to a modification of MEWS (Modified Early Warning Score). Prospective application of these tools produced a larger database of 4447 acute admissions from which logistic regression models produced PREEMPT-2 and PREAMBLE-2, which were then compared with the original systems and seven other early warning scoring systems. Results showed that in patients with arterial gases, the area under the receiver operator characteristic curve was significantly higher in PREEMPT-2 (89·1%) and PREAMBLE-2 (84.4%) than all other scoring systems. Similarly, in all patients, it was higher in PREAMBLE-2 (92·4%) than PREAMBLE-1 (88·1%) and the other scoring systems. In conclusion, risk of requiring ICU can be more accurately predicted using PREEMPT-2 and PREAMBLE-2, as described here, than by other early warning scoring systems developed over recent years
Experimental investigation of the use of sharp edges for the production of positive ions in field-ionization mass spectrometry
Various commercial razor blades have been tested for field ionization performance and compared with edges prepared electrochemically from platinum and tungsten foils. The results are correlated with data obtained from electron micrographs of the various edges. It is concluded that tungsten edges offer the best compromise between field ionization efficiency and durability of the edge
Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay
The quantum field theory of superluminal (tachyonic) particles is plagued
with a number of problems, which include the Lorentz non-invariance of the
vacuum state, the ambiguous separation of the field operator into creation and
annihilation operators under Lorentz transformations, and the necessity of a
complex reinterpretation principle for quantum processes. Another unsolved
question concerns the treatment of subluminal components of a tachyonic wave
packets in the field-theoretical formalism, and the calculation of the
time-ordered propagator. After a brief discussion on related problems, we
conclude that rather painful choices have to be made in order to incorporate
tachyonic spin-1/2 particles into field theory. We argue that the field theory
needs to be formulated such as to allow for localizable tachyonic particles,
even if that means that a slight unitarity violation is introduced into the S
matrix, and we write down field operators with unrestricted momenta. We find
that once these choices have been made, the propagator for the neutrino field
can be given in a compact form, and the left-handedness of the neutrino as well
as the right-handedness of the antineutrino follow naturally. Consequences for
neutrinoless double beta decay and superluminal propagation of neutrinos are
briefly discussed.Comment: 12 pages, 5 figure
Seeking Evolution of Dark Energy
We study how observationally to distinguish between a cosmological constant
(CC) and an evolving dark energy with equation of state . We focus
on the value of redshift Z* at which the cosmic late time acceleration begins
and . Four are studied, including the
well-known CPL model and a new model that has advantages when describing the
entire expansion era. If dark energy is represented by a CC model with , the present ranges for and
imply that Z* = 0.743 with 4% error. We discuss the possible implications of a
model independent measurement of Z* with better accuracy.Comment: 9 pages, LaTeX, 5 figure
Gravitation and inertia; a rearrangement of vacuum in gravity
We address the gravitation and inertia in the framework of 'general gauge
principle', which accounts for 'gravitation gauge group' generated by hidden
local internal symmetry implemented on the flat space. We connect this group to
nonlinear realization of the Lie group of 'distortion' of local internal
properties of six-dimensional flat space, which is assumed as a toy model
underlying four-dimensional Minkowski space. The agreement between proposed
gravitational theory and available observational verifications is satisfactory.
We construct relativistic field theory of inertia and derive the relativistic
law of inertia. This theory furnishes justification for introduction of the
Principle of Equivalence. We address the rearrangement of vacuum state in
gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys.
Space Sc
Recommended from our members
We are the Change that we Seek: Information Interactions During a Change of Viewpoint
There has been considerable hype about filter bubbles and echo chambers influencing the views of information consumers. The fear is that these technologies are undermining democracy by swaying opinion and creating an uninformed, polarised populace. The literature in this space is mostly techno-centric, addressing the impact of technology. In contrast, our work is the first research in the information interaction field to examine changing viewpoints from a human-centric perspective. It provides a new understanding of view change and how we might support informed, autonomous view change behaviour. We interviewed 18 participants about a self-identified change of view, and the information touchpoints they engaged with along the way. In this paper we present the information types and sources that informed changes of viewpoint, and the ways in which our participants interacted with that information. We describe our findings in the context of the techno-centric literature and suggest principles for designing digital information environments that support user autonomy and reflection in viewpoint formation
Water wave propagation and scattering over topographical bottoms
Here I present a general formulation of water wave propagation and scattering
over topographical bottoms. A simple equation is found and is compared with
existing theories. As an application, the theory is extended to the case of
water waves in a column with many cylindrical steps
Dynamical Chiral Symmetry Breaking on the Light Front.II. The Nambu--Jona-Lasinio Model
An investigation of dynamical chiral symmetry breaking on the light front is
made in the Nambu--Jona-Lasinio model with one flavor and N colors. Analysis of
the model suffers from extraordinary complexity due to the existence of a
"fermionic constraint," i.e., a constraint equation for the bad spinor
component. However, to solve this constraint is of special importance. In
classical theory, we can exactly solve it and then explicitly check the
property of ``light-front chiral transformation.'' In quantum theory, we
introduce a bilocal formulation to solve the fermionic constraint by the 1/N
expansion. Systematic 1/N expansion of the fermion bilocal operator is realized
by the boson expansion method. The leading (bilocal) fermionic constraint
becomes a gap equation for a chiral condensate and thus if we choose a
nontrivial solution of the gap equation, we are in the broken phase. As a
result of the nonzero chiral condensate, we find unusual chiral transformation
of fields and nonvanishing of the light-front chiral charge. A leading order
eigenvalue equation for a single bosonic state is equivalent to a leading order
fermion-antifermion bound-state equation. We analytically solve it for scalar
and pseudoscalar mesons and obtain their light-cone wavefunctions and masses.
All of the results are entirely consistent with those of our previous analysis
on the chiral Yukawa model.Comment: 23 pages, REVTEX, the version to be published in Phys.Rev.D; Some
clarifications in discussion of the LC wavefunctions adde
Wave resource variability: Impacts on wave power supply over regional to international scales
The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid; intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. This study analyses the wave resource over different spatial scales to investigate the potential impacts of the resource variability on the grid supply. It is found that the deployment of multiple wave energy sites results in a reduction in step changes in power, leading to an overall smoothing of the wave-generated electrical power
- …
