268 research outputs found

    Mixing and Decay Constants of Pseudoscalar Mesons: The Sequel

    Get PDF
    We present further tests and applications of the new eta-eta' mixing scheme recently proposed by us. The particle states are decomposed into orthonormal basis vectors in a light-cone Fock representation. Because of flavor symmetry breaking the mixing of the decay constants can be identical to the mixing of particle states at most for a specific choice of this basis. Theoretical and phenomenological considerations show that the quark flavor basis has this property and allows, therefore, for a reduction of the number of mixing parameters. A detailed comparison with other mixing schemes is also presented.Comment: 9 page

    Experimental cross sections of Ho 165 (α,n) Tm 168 and Er 166 (α,n) Yb 169 for optical potential studies relevant for the astrophysical γ process

    Get PDF
    Background: Optical potentials are crucial ingredients for the prediction of nuclear reaction rates needed in simulations of the astrophysical γ process. Associated uncertainties are particularly large for reactions involving α particles. This includes (γ,α) reactions which are of special importance in the γ process. Purpose: The measurement of (α,n) reactions allows for an optimization of currently used α-nucleus potentials. The reactions Ho165(α,n) and Er166(α,n) probe the optical model in a mass region where γ process calculations exhibit an underproduction of p nuclei which is not yet understood. Method: To investigate the energy-dependent cross sections of the reactions Ho165(α,n) and Er166(α,n) close to the reaction threshold, self-supporting metallic foils were irradiated with α particles using the FN tandem Van de Graaff accelerator at the University of Notre Dame. The induced activity was determined afterwards by monitoring the specific β-decay channels. Results: Hauser-Feshbach predictions with a widely used global α potential describe the data well at energies where the cross sections are almost exclusively sensitive to the α widths. Increasing discrepancies appear towards the reaction threshold at lower energy. Conclusions: The tested global α potential is suitable at energies above 14 MeV, while a modification seems necessary close to the reaction threshold. Since the γ and neutron widths show non-negligible impact on the predictions, complementary data are required to judge whether or not the discrepancies found can be solely assigned to the α width. © 2014 American Physical Society.Peer reviewedFinal Accepted Versio

    Hydro-physical processes at the plunge point: an analysis using satellite and in situ data

    Get PDF
    The plunge point is the main mixing point between river and epilimnetic reservoir water. Plunge point monitoring is essential for understanding the behavior of density currents and their implications for reservoir. The use of satellite imagery products from different sensors (Landsat TM band 6 thermal signatures and visible channels) for the characterization of the river-reservoir transition zone is presented in this study. It is demonstrated the feasibility of using Landsat TM band imagery to discern the subsurface river plumes and the plunge point. The spatial variability of the plunge point evident in the hydrologic data illustrates the advantages of synoptic satellite measurements over in situ point measurements alone to detect the river-reservoir transition zone. During the dry season, when the river-reservoir water temperature differences vanish and the river circulation is characterized by interflow-overflow, the river water inserts into the upper layers of the reservoir, affecting water quality. The results indicate a good agreement between hydrologic and satellite data and that the joint use of thermal and visible channel data for the operational monitoring of a plunge point is feasible. The deduced information about the density current from this study could potentially be assimilated into numerical models and hence be of significant interest for environmental and climatological research

    Rare exclusive semileptonic b -> s transitions in the Standard Model

    Full text link
    We study long-distance effects in rare exclusive semileptonic decays B -> (K, K*) (l+ l-, nu bar{nu}) and analyze dilepton spectra and asymmetries within the framework of the Standard Model. The form factors, describing the meson transition amplitudes of the effective Hamiltonian are calculated within the lattice-constrained dispersion quark model: the form factors are given by dispersion representations through the wave functions of the initial and final mesons, and these wave functions are chosen such that the B -> K* transition form factors agree with the lattice results at large q**2. We calculate branching ratios of semileptonic B -> K, K* transition modes and study the sensitivity of observables to the long-distance contributions. The shape of the forward-backward asymmetry and the longitudinal lepton polarization asymmetry are found to be independent of the long-distance effects and mainly determined by the values of the Wilson coefficients in the Standard Model.Comment: revtex, 17 pp., 5 figures with epsfig.st

    Measurement of the 58Ni(α, γ) 62Zn reaction and its astrophysical impact

    Get PDF
    Funding Details: PHY 08-22648, NSF, National Science Foundation; PHY 0969058, NSF, National Science Foundation; PHY 1102511, NSF, National Science FoundationCross section measurements of the 58Ni(α,γ)62Zn reaction were performed in the energy range Eα=5.5to9.5 MeV at the Nuclear Science Laboratory of the University of Notre Dame, using the NSCL Summing NaI(Tl) detector and the γ-summing technique. The measurements are compared to predictions in the statistical Hauser-Feshbach model of nuclear reactions using the SMARAGD code. It is found that the energy dependence of the cross section is reproduced well but the absolute value is overestimated by the prediction. This can be remedied by rescaling the α width by a factor of 0.45. Stellar reactivities were calculated with the rescaled α width and their impact on nucleosynthesis in type Ia supernovae has been studied. It is found that the resulting abundances change by up to 5% when using the new reactivities. © 2014 American Physical Society.Peer reviewe

    Comments on Diquarks, Strong Binding and a Large Hidden QCD Scale

    Full text link
    We present arguments regarding diquarks possible role in low-energy hadron phenomenology that escaped theorists' attention so far. Good diquarks, i.e. the 0+0^{+} states of two quarks, are argued to have a two-component structure with one of the components peaking at distances several times shorter than a typical hadron size (a short-range core). This can play a role in solving two old puzzles of the 't Hooft 1/N expansion: strong quark mass dependence of the vacuum energy density and strong violations of the Okubo-Zweig-Iizuka (OZI) rule in the quark-antiquark 0±0^\pm channels. In both cases empiric data defy 't Hooft's 1/N suppression. If good diquarks play a role at an intermediate energy scale they ruin 't Hoofts planarity because of their mixed-flavor composition. This new scale associated with the good diquarks may be related to a numerically large scale discovered in [V. Novikov, M. Shifman, A. Vainshtein and V. Zakharov, Nucl. Phys. B 191, 301 (1981)] in a number of phenomena mostly related to vacuum quantum numbers and 0±0^\pm glueball channels. If SU(3)color_{\rm color} of bona fide QCD is replaced by SU(2)color_{\rm color}, diquarks become well-defined gauge invariant objects. Moreover, there is an exact symmetry relating them to pions. In this limit predictions regarding good diquarks are iron-clad. If passage from SU(2)color_{\rm color} to SU(3)color_{\rm color} does not lead to dramatic disturbances, these predictions remain qualitatively valid in bona fide QCD.Comment: 18 pages, 3 figures; journal version, minor change

    Heavy-to-light transition form factors and their relations in light-cone QCD sum rules

    Full text link
    The improved light-cone QCD sum rules by using chiral current correlator is systematically reviewed and applied to the calculation of all the heavy-to-light form factors, including all the semileptonic and penguin ones. By choosing suitable chiral currents, the light-cone sum rules for all the form factors are greatly simplified and depend mainly on one leading twist distribution amplitude of the light meson. As a result, relations between these form factors arise naturally. At the considered accuracy these relations reproduce the results obtained in the literature. Moreover, since the explicit dependence on the leading twist distribution amplitudes is preserved, these relations may be more useful to simulate the experimental data and extract the information on the distribution amplitude.Comment: 1+16 pages, no figure

    Hierarchy plus anarchy in quark masses and mixings

    Full text link
    We introduce a new parameterisation of the effect of unknown corrections from new physics on quark and lepton mass matrices. This parameterisation is used in order to study how the hierarchies of quark masses and mixing angles are modified by random perturbations of the Yukawa matrices. We discuss several examples of flavour relations predicted by different textures, analysing how these relations are influenced by the random perturbations. We also comment on the unlikely possibility that unknown corrections contribute significantly to the hierarchy of masses and mixings.Comment: LaTeX, 18 pages, 16 PS figure

    Yet Another Extension of the Standard Model: Oases in the Desert?

    Full text link
    We have searched for conceptually simple extensions of the standard model, and describe here a candidate model which we find attractive. Our starting point is the assumption that off-diagonal CKM mixing matrix elements are directly related by lowest order perturbation theory to the quark mass matrices. This appears to be most easily and naturally implemented by assuming that all off-diagonal elements reside in the down-quark mass matrix. This assumption is in turn naturally realized by introducing three generations of heavy, electroweak-singlet down quarks which couple to the Higgs sector diagonally in flavor, while mass-mixing off-diagonally with the light down-quarks. Anomaly cancellation then naturally leads to inclusion of electroweak vector-doublet leptons. It is then only a short step to completing the extension to three generations of fundamental representations of E(6). Assuming only that the third generation B couples to the Higgs sector at least as strongly as does the top quark, the mass of the B is roughly estimated to lie between 1.7 TeV and 10 TeV, with lower-generation quarks no heavier. The corresponding guess for the new leptons is a factor two lower. Within the validity of the model, flavor and CP violation are ``infrared'' in nature, induced by semi-soft mass mixing terms, not Yukawa couplings. If the Higgs couplings of the new quarks are flavor symmetric, then there necessarily must be at least one ``oasis'' in the desert, induced by new radiative corrections to the top quark and Higgs coupling constants, and roughly at 1000 TeV.Comment: LaTex, 40 page
    corecore