6,411 research outputs found
Phase Coexistence of a Stockmayer Fluid in an Applied Field
We examine two aspects of Stockmayer fluids which consists of point dipoles
that additionally interact via an attractive Lennard-Jones potential. We
perform Monte Carlo simulations to examine the effect of an applied field on
the liquid-gas phase coexistence and show that a magnetic fluid phase does
exist in the absence of an applied field. As part of the search for the
magnetic fluid phase, we perform Gibbs ensemble simulations to determine phase
coexistence curves at large dipole moments, . The critical temperature is
found to depend linearly on for intermediate values of beyond the
initial nonlinear behavior near and less than the where no
liquid-gas phase coexistence has been found. For phase coexistence in an
applied field, the critical temperatures as a function of the applied field for
two different are mapped onto a single curve. The critical densities
hardly change as a function of applied field. We also verify that in an applied
field the liquid droplets within the two phase coexistence region become
elongated in the direction of the field.Comment: 23 pages, ReVTeX, 7 figure
Analysis of Peculiarities of the Stellar Velocity Field in the Solar Neighborhood
Based on a new version of the Hipparcos catalogue and an updated
Geneva-Copenhagen survey of F and G dwarfs, we analyze the space velocity field
of about 17000 single stars in the solar neighborhood. The main known clumps,
streams, and branches (Pleiades, Hyades, Sirius, Coma Berenices, Hercules, Wolf
630-alpha Ceti, and Arcturus) have been identified using various approaches.
The evolution of the space velocity field for F and G dwarfs has been traced as
a function of the stellar age. We have managed to confirm the existence of the
recently discovered KFR08 stream. We have found 19 Hipparcos stars, candidates
for membership in the KFR08 stream, and obtained an isochrone age estimate for
the stream, 13 Gyr. The mean stellar ages of the Wolf 630-alpha Ceti and
Hercules streams are shown to be comparable, 4--6 Gyr. No significant
differences in the metallicities of stars belonging to these streams have been
found. This is an argument for the hypothesis that these streams owe their
origin to a common mechanism.Comment: 23 pages, 9 figure
c-Abl and Src-family kinases cross-talk in regulation of myeloid cell migration
AbstractCytoskeleton dynamics are regulated by Src-family tyrosine kinases (SFKs) and c-Abl. We found that the SFK members Hck and c-Fgr regulate tyrosine phosphorylation of c-Abl and c-Abl associates with β1 integrin-bound Hck or c-Fgr in murine macrophages. Studies with selective inhibitors and cells from SFK-deficient mice showed that c-Abl and SFK regulate migration and activation of the small GTPases Cdc42 and Rac in macrophages. Additionally, human neutrophil chemotactic activity was reduced by c-Abl inhibitors, and neutrophils from chronic myeloid leukaemia patients displayed an increased chemotactic ability. Hence, Src-family kinase and c-Abl cross-talk in the regulation of myeloid cell migration.Structured summaryMINT-7296608: Integrin beta-1 (uniprotkb:P09055) physically interacts (MI:0914) with Hck (uniprotkb:P08103), Abl (uniprotkb:P00520) and Fgr (uniprotkb:P14234) by anti bait coimmunoprecipitation (MI:0006) MINT-7296596: Integrin beta-1 (uniprotkb:P09055) physically interacts (MI:0914) with Fgr (uniprotkb:P14234) and Abl (uniprotkb:P00520) by anti bait coimmunoprecipitation (MI:0006
Steinberg modules and Donkin pairs
We prove that in positive characteristic a module with good filtration for a
group of type E6 restricts to a module with good filtration for a subgroup of
type F4. (Recall that a filtration of a module for a semisimple algebraic group
is called good if its layers are dual Weyl modules.) Our result confirms a
conjecture of Brundan for one more case. The method relies on the canonical
Frobenius splittings of Mathieu. Next we settle the remaining cases, in
characteristic not 2, with a computer-aided variation on the old method of
Donkin.Comment: 16 pages; proof of Brundan's conjecture adde
Formation of antideuterons in heavy ion collisions
The antideuteron production rate at high-energy heavy ions collisions is
calculated basing on the concept of anti-d formation by antinucleons which move
in the mean field of the fireball constituents (mainly pions). The explicit
formula is presented for the coalescence parameter B_2 in terms of deuteron
binding energy and fireball volume.Comment: 7 pages, 1 figure, latex. v3: argumentation improved, references
adde
Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems
The phenomenon of super-radiance (Dicke effect, coherent spontaneous
radiation by a gas of atoms coupled through the common radiation field) is well
known in quantum optics. The review discusses similar physics that emerges in
open and marginally stable quantum many-body systems. In the presence of open
decay channels, the intrinsic states are coupled through the continuum. At
sufficiently strong continuum coupling, the spectrum of resonances undergoes
the restructuring with segregation of very broad super-radiant states and
trapping of remaining long-lived compound states. The appropriate formalism
describing this phenomenon is based on the Feshbach projection method and
effective non-Hermitian Hamiltonian. A broader generalization is related to the
idea of doorway states connecting quantum states of different structure. The
method is explained in detail and the examples of applications are given to
nuclear, atomic and particle physics. The interrelation of the collective
dynamics through continuum and possible intrinsic many-body chaos is studied,
including universal mesoscopic conductance fluctuations. The theory serves as a
natural framework for general description of a quantum signal transmission
through an open mesoscopic system.Comment: 85 pages, 10 figure
An ABS control logic based on wheel force measurement
The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien
Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions
We investigate hadron production as well as transverse hadron spectra from
proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 GeV
to 21.3 TeV within two independent transport approaches (HSD and UrQMD)
that are based on quark, diquark, string and hadronic degrees of freedom. The
comparison to experimental data on transverse mass spectra from , and
C+C (or Si+Si) reactions shows the reliability of the transport models for
light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies
above 5 AGeV, furthermore, the measured transverse mass
spectra have a larger inverse slope parameter than expected from the default
calculations. We investigate various scenarios to explore their potential
effects on the spectra. In particular the initial state Cronin effect
is found to play a substantial role at top SPS and RHIC energies. However, the
maximum in the ratio at 20 to 30 AGeV is missed by ~40% and
the approximately constant slope of the spectra at SPS energies is not
reproduced either. Our systematic analysis suggests that the additional
pressure - as expected from lattice QCD calculations at finite quark chemical
potential and temperature - should be generated by strong
interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb)
collisions.Comment: 20 pages, 15 figures, Phys. Rev. C, in pres
Effect of Gravity and Confinement on Phase Equilibria: A Density Matrix Renormalization Approach
The phase diagram of the 2D Ising model confined between two infinite walls
and subject to opposing surface fields and to a bulk "gravitational" field is
calculated by means of density matrix renormalization methods. In absence of
gravity two phase coexistence is restricted to temperatures below the wetting
temperature. We find that gravity restores the two phase coexistence up to the
bulk critical temperature, in agreement with previous mean-field predictions.
We calculate the exponents governing the finite size scaling in the temperature
and in the gravitational field directions. The former is the exponent which
describes the shift of the critical temperature in capillary condensation. The
latter agrees, for large surface fields, with a scaling assumption of Van
Leeuwen and Sengers. Magnetization profiles in the two phase and in the single
phase region are calculated. The profiles in the single phase region, where an
interface is present, agree well with magnetization profiles calculated from a
simple solid-on-solid interface hamiltonian.Comment: 4 pages, RevTeX and 4 PostScript figures included. Final version as
published. To appear in Phys. Rev. Let
- …
