1,219 research outputs found
Electrophoretic Properties of Highly Charged Colloids: A Hybrid MD/LB Simulation Study
Using computer simulations, the electrophoretic motion of a positively
charged colloid (macroion) in an electrolyte solution is studied in the
framework of the primitive model. Hydrodynamic interactions are fully taken
into account by applying a hybrid simulation scheme, where the charged ions
(i.e. macroion and electrolyte), propagated via molecular dynamics (MD), are
coupled to a Lattice Boltzmann (LB) fluid. In a recent experiment it was shown
that, for multivalent salt ions, the mobility initially increases with
charge density , reaches a maximum and then decreases with further
increase of . The aim of the present work is to elucidate the behaviour
of at high values of . Even for the case of monovalent microions,
we find a decrease of with . A dynamic Stern layer is defined
that includes all the counterions that move with the macroion while subject to
an external electrical field. The number of counterions in the Stern layer,
, is a crucial parameter for the behavior of at high values of
. In this case, the mobility depends primarily on the ratio
(with the valency of the macroion). The previous contention that
the increase in the distortion of the electric double layer (EDL) with
increasing leads to the lowering of does not hold for high
. In fact, we show that the deformation of the EDL decreases with
increase of . The role of hydrodynamic interactions is inferred from
direct comparisons to Langevin simulations where the coupling to the LB fluid
is switched off. Moreover, systems with divalent counterions are considered. In
this case, at high values of the phenomenon of charge inversion is
found.Comment: accepted in J. Chem Phys., 10 pages, 9 figure
Where the linearized Poisson-Boltzmann cell model fails: (I) spurious phase separation in charged colloidal suspensions
We perform a linearization of the Poisson-Boltzmann (PB) density functional
for spherical Wigner-Seitz cells that yields Debye-H\"uckel-like equations
agreeing asymptotically with the PB results in the weak-coupling
(high-temperature) limit. Both the canonical (fixed number of microions) as
well as the semi-grand-canonical (in contact with an infinite salt reservoir)
cases are considered and discussed in a unified linearized framework. In the
canonical case, for sufficiently large colloidal charges the linearized theory
predicts the occurrence of a thermodynamical instability with an associated
phase separation of the homogeneous suspension into dilute (gas) and dense
(liquid) phases. In the semi-grand-canonical case it is predicted that the
isothermal compressibility and the osmotic-pressure difference between the
colloidal suspension and the salt reservoir become negative in the
low-temperature, high-surface charge or infinite-dilution (of polyions) limits.
As already pointed out in the literature for the latter case, these features
are in disagreement with the exact nonlinear PB solution inside a Wigner-Seitz
cell and are thus artifacts of the linearization. By using explicitly
gauge-invariant forms of the electrostatic potential we show that these
artifacts, although thermodynamically consistent with quadratic expansions of
the nonlinear functional and osmotic pressure, may be traced back to the
non-fulfillment of the underlying assumptions of the linearization.Comment: 32 pages, 3 PostScript figures, submitted to J. Chem. Phy
Numerical electrokinetics
A new lattice method is presented in order to efficiently solve the
electrokinetic equations, which describe the structure and dynamics of the
charge cloud and the flow field surrounding a single charged colloidal sphere,
or a fixed array of such objects. We focus on calculating the electrophoretic
mobility in the limit of small driving field, and systematically linearise the
equations with respect to the latter. This gives rise to several subproblems,
each of which is solved by a specialised numerical algorithm. For the total
problem we combine these solvers in an iterative procedure. Applying this
method, we study the effect of the screening mechanism (salt screening vs.
counterion screening) on the electrophoretic mobility, and find a weak
non-trivial dependence, as expected from scaling theory. Furthermore, we find
that the orientation of the charge cloud (i. e. its dipole moment) depends on
the value of the colloid charge, as a result of a competition between
electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter
(proceedings of the 2012 CODEF conference
An evaluation of exact matching and propensity score methods as applied in a comparative effectiveness study of inhaled corticosteroids in asthma
Peer reviewedPublisher PD
Impact of EMA regulatory label changes on systemic diclofenac initiation, discontinuation, and switching to other pain medicines in Scotland, England, Denmark, and The Netherlands
Purpose: In June 2013 a European Medicines Agency referral procedure concluded that diclofenac was associated with an elevated risk of acute cardiovascular events and contraindications, warnings, and changes to the product information were implemented across the European Union. This study measured the impact of the regulatory action on the prescribing of systemic diclofenac in Denmark, The Netherlands, England, and Scotland. Methods: Quarterly time series analyses measuring diclofenac prescription initiation, discontinuation and switching to other systemic nonsteroidal anti-inflammatory (NSAIDs), topical NSAIDs, paracetamol, opioids, and other chronic pain medication in those who discontinued diclofenac. Absolute effects were estimated using interrupted time series regression. Results: Overall, diclofenac prescription initiations fell during the observation periods of all countries. Compared with Denmark where there appeared to be amore limited effect, the regulatory action was associated with significant immediate reductions in diclofenac initiation in The Netherlands (−0.42%, 95% CI, −0.66% to −0.18%), England (−0.09%, 95% CI, −0.11% to −0.08%), and Scotland (−0.67%, 95% CI, −0.79% to −0.55%); and falling trends in diclofenac initiation in the Netherlands (−0.03%, 95% CI, −0.06% to −0.01% per quarter) and Scotland (−0.04%, 95% CI, −0.05% to −0.02% per quarter). There was no significant impact on diclofenac discontinuation in any country. The regulatory action was associated with modest differences in switching to other pain medicines following diclofenac discontinuation. Conclusions: The regulatory action was associated with significant reductions in overall diclofenac initiation which varied by country and type of exposure. There was no impact on discontinuation and variable impact on switching
Many-body interactions and melting of colloidal crystals
We study the melting behavior of charged colloidal crystals, using a
simulation technique that combines a continuous mean-field Poisson-Boltzmann
description for the microscopic electrolyte ions with a Brownian-dynamics
simulation for the mesoscopic colloids. This technique ensures that many-body
interactions between the colloids are fully taken into account, and thus allows
us to investigate how many-body interactions affect the solid-liquid phase
behavior of charged colloids. Using the Lindemann criterion, we determine the
melting line in a phase-diagram spanned by the colloidal charge and the salt
concentration. We compare our results to predictions based on the established
description of colloidal suspensions in terms of pairwise additive Yukawa
potentials, and find good agreement at high-salt, but not at low-salt
concentration. Analyzing the effective pair-interaction between two colloids in
a crystalline environment, we demonstrate that the difference in the melting
behavior observed at low salt is due to many-body interactions
A 1-D modelling of streaming potential dependence on water content during drainage experiment in sand
The understanding of electrokinetics for unsaturated conditions is crucial
for numerous of geophysical data interpretation. Nevertheless, the behaviour of
the streaming potential coefficient C as a function of the water saturation Sw
is still discussed. We propose here to model both the Richards' equation for
hydrodynamics and the Poisson's equation for electrical potential for
unsaturated conditions using 1-D finite element method. The equations are first
presented and the numerical scheme is then detailed for the Poisson's equation.
Then, computed streaming potentials (SPs) are compared to recently published SP
measurements carried out during drainage experiment in a sand column. We show
that the apparent measurement of DV / DP for the dipoles can provide the SP
coefficient in these conditions. Two tests have been performed using existing
models for the SP coefficient and a third one using a new relation. The results
show that existing models of unsaturated SP coefficients C(Sw) provide poor
results in terms of SP magnitude and behaviour. We demonstrate that the
unsaturated SP coefficient can be until one order of magnitude larger than
Csat, its value at saturation. We finally prove that the SP coefficient follows
a non-monotonous behaviour with respect to water saturation. Key words:
Electrical properties; Electromagnetic theory; Hydrogeophysics; Hydrology;
Permeability and porosity; electrokinetic; streaming potential; self-potential;
water content; water saturation; unsaturated condition; finite element modelin
Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach
Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities
Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage
Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates.- Background - Results -- Authentication of a preserved oral biofilm in calculus samples -- Dental calculus and plaque biofilm communities are distinct -- Health-associated communities of dental plaque and calculus are distinct -- Signatures of health and of disease are shared in modern and historic calculus samples -- Microbial community differences between health and disease in calculus are poorly resolved -- Absence of caries-specific microbial profiles in dental calculus -- Microbial co-exclusion patterns in plaque and calculus reflect biofilm maturity -- Microbial complexes in plaque and calculus -- Functional prediction in calculus is poorly predictive of health status -- Proteomic profiles of historic healthy site calculus -- Correlations between taxonomic, proteomic, and metabolomic profiles - Discussion - Conclusions - Materials and methods --Historic and modern calculus sample collection DNA extraction -- DNA library construction and high-throughput sequencing -- DNA sequence processing -- Genetic assessment of historic calculus sample preservation -- Genetic microbial taxonomic profiling -- Principal component analysis -- Assessment of differentially abundant taxa -- Sparse partial least squares-discriminant analysis -- Assessment of microbial co-exclusion patterns -- Gene functional categorization with SEED -- Proteomics -- Metabolomics -- Regularized canonical correlation analysi
- …
