5,527 research outputs found

    Modeling anisotropic and rate-dependent plasticity in short-fiber reinforced thermoplastics

    Get PDF
    In this study, an anisotropic viscoelastic-viscoplastic macro-mechanical model is presented for short-fiber reinforced thermoplastics (SFRT). In injection molding of SFRT, the fiber orientation is influenced by the flow velocity profile which varies throughout the mold. The flow-induced orientation in the microstructure leads to anisotropy in the mechanical response. In addition to the mechanical anisotropy, SFRTs show time dependent behavior because of the thermoplastic matrix. The developed model captures the effects of both material orientation and loading rate on the yield behavior. In this study, uniaxial tests are performed at different strain rates and material orientations with samplescutfrominjectionmoldedplaques. Theexperimentalresultsshowthattheeffects of loading rate and material orientation on the yield are decoupled. The presented model takes advantage of this observation to simplify material characterization. An implicit integration scheme is used for the numerical implementation of the model as a UMAT in ABAQUS. Multiple relaxation times are used in order to capture the nonlinear pre-yield regime. An efficient method for obtaining the model parameters for different modes is proposed. Experimental results are used for validation of the model and a good agreement is observed for the prediction of viscoelastic and viscoplastic behavior

    Possible co-existence of local itinerancy and global localization in a quasi-one-dimensional conductor

    Full text link
    In the chain compound PrBa2_2Cu4_4O8_8 localization appears simultaneously with a dimensional crossover in the electronic ground state when the scattering rate in the chains exceeds the hopping rate between the chains. Here we report the discovery of a large, transverse magnetoresistance in PrBa2_2Cu4_4O8_8 in the localized regime. This result suggests a novel form of localization whereby electrons retain their metallic (quasi-one-dimensional) character over a microscopic length scale despite the fact that macroscopically, they exhibit localized (one-dimensional) behavior.Comment: 4 pages, 4 Figure

    Irradiation-induced confinement in a quasi-one-dimensional metal

    Full text link
    The anisotropic resistivity of PrBa2_2Cu4_4O8_8 has been measured as a function of electron irradiation fluence. Localization effects are observed for extremely small amounts of disorder corresponding to electron mean-free-paths of order 100 unit cells. Estimates of the localization corrections suggest that this anomalous localization threshold heralds a crossover to a ground state with pronounced one-dimensional character in which conduction electrons become confined to a small cluster of chains.Comment: 4 pages, 4 figure

    Mec-associated dru typing in the epidemiological analysis of ST239 MRSA in Malaysia.

    Get PDF
    The usefulness of mec-associated dru typing in the epidemiological analysis of methicillin-resistant Staphylococcus aureus (MRSA) isolated in Malaysia was investigated and compared with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and spa and SCCmec typing. The isolates studied included all MRSA types in Malaysia. Multilocus sequence type ST188 and ST1 isolates were highly clonal by all typing methods. However, the dru typing of ST239 isolates produced the clearest discrimination between SCCmec IIIa and III isolates, yielding more subtypes than any other method. Evaluation of the discriminatory power for each method identified dru typing and PFGE as the most discriminatory, with Simpson’s index of diversity (SID) values over 89%, including an isolate which was non-typeable by spa, but dru-typed as dt13j. The discriminatory ability of dru typing, especially with closely related MRSA ST239 strains (e.g., Brazilian and Hungarian), underscores its utility as a tool for the epidemiological investigation of MRSA

    Decadal changes of the Western Arabian sea ecosystem

    Get PDF
    Historical data from oceanographic expeditions and remotely sensed data on outgoing longwave radiation, temperature, wind speed and ocean color in the western Arabian Sea (1950–2010) were used to investigate decadal trends in the physical and biochemical properties of the upper 300 m. 72 % of the 29,043 vertical profiles retrieved originated from USA and UK expeditions. Increasing outgoing longwave radiation, surface air temperatures and sea surface temperature were identified on decadal timescales. These were well correlated with decreasing wind speeds associated with a reduced Siberian High atmospheric anomaly. Shoaling of the oxycline and nitracline was observed as well as acidification of the upper 300 m. These physical and chemical changes were accompanied by declining chlorophyll-a concentrations, vertical macrofaunal habitat compression, declining sardine landings and an increase of fish kill incidents along the Omani coast

    Late Little Ice Age palaeoenvironmental records from the Anzali and Amirkola Lagoons (south Caspian Sea): Vegetation and sea level changes

    Get PDF
    This is a postprint version of the article. The official published article can be found from the link below - Copyright @ 2011 Elsevier Ltd.Two internationally important Ramsar lagoons on the south coast of the Caspian Sea (CS) have been studied by palynology on short sediment cores for palaeoenvironmental and palaeoclimatic investigations. The sites lie within a small area of very high precipitation in a region that is otherwise dry. Vegetation surveys and geomorphological investigations have been used to provide a background to a multidisciplinary interpretation of the two sequences covering the last four centuries. In the small lagoon of Amirkola, the dense alder forested wetland has been briefly disturbed by fire, followed by the expansion of rice paddies from AD1720 to 1800. On the contrary, the terrestrial vegetation reflecting the diversity of the Hyrcanian vegetation around the lagoon of Anzali remained fairly complacent over time. The dinocyst and non-pollen palynomorph assemblages, revealing changes that have occurred in water salinity and water levels, indicate a high stand during the late Little Ice Age (LIA), from AD < 1620 to 1800–1830. In Amirkola, the lagoon spit remained intact over time, whereas in Anzali it broke into barrier islands during the late LIA, which merged into a spit during the subsequent sea level drop. A high population density and infrastructure prevented renewed breaking up of the spit when sea level reached its maximum (AD1995). Similar to other sites in the region around the southern CS, these two lagoonal investigations indicate that the LIA had a higher sea level as a result of more rainfall in the drainage basin of the CS.The coring and the sedimentological analyses were funded by the Iranian National Institute for Oceanography in the framework of a research project entitled “Investigation of the Holocene sediment along the Iranian coast of Caspian Sea: central Guilan”. The radiocarbon date of core HCGL02 was funded by V. Andrieu (Europôle Méditerranéen de l'Arbois, France) and that of core HCGA04 by Brunel University

    Study of Z boson production in pPb collisions at √sNN = 5.02 TeV

    Get PDF
    © 2016 The Author.The production of Z bosons in pPb collisions at sNN=5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions

    Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV

    Get PDF
    A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
    corecore