116 research outputs found

    Molecular misreading: The occurrence of frameshift proteins in different diseases

    Get PDF
    Neuronal homoeostasis requires a constant balance between biosynthetic and catabolic processes. Eukaryotic cells primarily use two distinct mechanisms for degradation: the proteasome and autophagy of aggregates by the lysosomes. We focused on the UPS (ubiquitin-proteasome system). As a result of molecular misreading, misframed UBB (ubiquitin B) (UBB+1) is generated. UBB+1 accumulates in the neuritic plaques and neurofibrillary tangles in all patients with AD (Alzheimer's disease) and in the neuronal and glial hallmarks of other tauopathies and in polyglutamine diseases such as Huntington's disease. UBB+1 is not present in synucleinopathies such as Parkinson's disease. We showed that UBB+1 causes UPS dysfunction, aggregation and apoptotic cell death. UBB+1 is also present in non-neurological cells, hepatocytes of the diseased liver and in muscles during inclusion body myositis. Other frequently occurring (age-related) diseases such as Type 2 (non-insulin-dependent) diabetes mellitus are currently under investigation. These findings point to the importance of the UPS in diseases and open new avenues for target identification of the main players of the UPS. Treatment of these diseases with tools (e.g. viral RNA interference constructs) to intervene with specific targets is the next step

    Dysfunction of Protein Quality control in Parkinsonism-Dementia complex of Guam

    Get PDF
    Guam parkinsonism-dementia complex (G-PDC) is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.ArticleFRONTIERS IN NEUROLOGY.9:173(2018)journal articl

    Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers.</p> <p>Result</p> <p>We determined that loss of H3K79 methylation results in a partial silencing defect that could be bypassed by conditions that promote targeting of Sir proteins to heterochromatin. Furthermore, the silencing defect in strains lacking Dot1 was dependent on methylation of H3K4 by Set1 and histone acetylation by Gcn5, Elp3, and Sas2 in euchromatin. Our study shows that multiple histone modifications associated with euchromatin positively modulate the function of heterochromatin by distinct mechanisms. Genetic interactions between Set1 and Set2 suggested that the H3K36 methyltransferase Set2, unlike most other euchromatic modifiers, negatively affects gene silencing.</p> <p>Conclusion</p> <p>Our genetic dissection of Dot1's role in silencing in budding yeast showed that heterochromatin formation is modulated by multiple euchromatic histone modifiers that act by non-overlapping mechanisms. We discuss how euchromatic histone modifiers can make negative as well as positive contributions to gene silencing by competing with heterochromatin proteins within heterochromatin, within euchromatin, and at the boundary between euchromatin and heterochromatin.</p

    Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study

    Get PDF
    Twenty well-characterized isolates of methicillin-resistant Staphylococcus aureus were used to study the optimal resolution and interlaboratory reproducibility of pulsed-field gel electrophoresis (PFGE) of DNA macrorestriction fragments. Five identical isolates (one PFGE type), 5 isolates that produced related PFGE subtypes, and 10 isolates with unique PFGE patterns were analyzed blindly in 12 different laboratories by in-house protocols. In several laboratories a standardized PFGE protocol with a commercial kit was applied successfully as well. Eight of the centers correctly identified the genetic homogeneity of the identical isolates by both the in-house and standard protocols. Four of 12 laboratories failed to produce interpretable data by the standardized protocol, due to technical problems (primarily plug preparation). With the five rel

    Dot1 binding induces chromatin rearrangements by histone methylation-dependent and -independent mechanisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome.</p> <p>Results</p> <p>Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1.</p> <p>Conclusions</p> <p>Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.</p

    Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation

    Get PDF
    Loss of neurons in neurodegenerative diseases is usually preceded by the accumulation of protein deposits that contain components of the ubiquitin/proteasome system. Affected neurons in Alzheimer's disease often accumulate UBB+1, a mutant ubiquitin carrying a 19–amino acid C-terminal extension generated by a transcriptional dinucleotide deletion. Here we show that UBB+1 is a potent inhibitor of ubiquitin-dependent proteolysis in neuronal cells, and that this inhibitory activity correlates with induction of cell cycle arrest. Surprisingly, UBB+1 is recognized as a ubiquitin fusion degradation (UFD) proteasome substrate and ubiquitinated at Lys29 and Lys48. Full blockade of proteolysis requires both ubiquitination sites. Moreover, the inhibitory effect was enhanced by the introduction of multiple UFD signals. Our findings suggest that the inhibitory activity of UBB+1 may be an important determinant of neurotoxicity and contribute to an environment that favors the accumulation of misfolded proteins

    Long-term proteasomal inhibition in transgenic mice by UBB+1 expression results in dysfunction of central respiration control reminiscent of brainstem neuropathology in Alzheimer patients

    Get PDF
    Aging and neurodegeneration are often accompanied by a functionally impaired ubiquitin–proteasome system (UPS). In tauopathies and polyglutamine diseases, a mutant form of ubiquitin B (UBB(+1)) accumulates in disease-specific aggregates. UBB(+1) mRNA is generated at low levels in vivo during transcription from the ubiquitin B locus by molecular misreading. The resulting mutant protein has been shown to inhibit proteasome function. To elucidate causative effects and neuropathological consequences of UBB(+1) accumulation, we used a UBB(+1) expressing transgenic mouse line that models UPS inhibition in neurons and exhibits behavioral phenotypes reminiscent of Alzheimer’s disease (AD). In order to reveal affected organs and functions, young and aged UBB(+1) transgenic mice were comprehensively phenotyped for more than 240 parameters. This revealed unexpected changes in spontaneous breathing patterns and an altered response to hypoxic conditions. Our findings point to a central dysfunction of respiratory regulation in transgenic mice in comparison to wild-type littermate mice. Accordingly, UBB(+1) was strongly expressed in brainstem regions of transgenic mice controlling respiration. These regions included, e.g., the medial part of the nucleus of the tractus solitarius and the lateral subdivisions of the parabrachial nucleus. In addition, UBB(+1) was also strongly expressed in these anatomical structures of AD patients (Braak stage #6) and was not expressed in non-demented controls. We conclude that long-term UPS inhibition due to UBB(+1) expression causes central breathing dysfunction in a transgenic mouse model of AD. The UBB(+1) expression pattern in humans is consistent with the contribution of bronchopneumonia as a cause of death in AD patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-012-1003-7) contains supplementary material, which is available to authorized users

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore