9,466 research outputs found
Free energies in the presence of electric and magnetic fields
We discuss different free energies for materials in static electric and
magnetic fields. We explain what the corresponding Hamiltonians are, and
describe which choice gives rise to which result for the free energy change,
dF, in the thermodynamic identity. We also discuss which Hamiltonian is the
most appropriate for calculations using statistical mechanics, as well as the
relationship between the various free energies and the "Landau function", which
has to be minimized to determine the equilibrium polarization or magnetization,
and is central to Landau's theory of second order phase transitions
Atom lithography without laser cooling
Using direct-write atom lithography, Fe nanolines are deposited with a pitch
of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to
6 nm. These values are achieved by relying on geometrical collimation of the
atomic beam, thus without using laser collimation techniques. This opens the
way for applying direct-write atom lithography to a wide variety of elements.Comment: 7 pages, 11 figure
Constraining the Mass Profiles of Stellar Systems: Schwarzschild Modeling of Discrete Velocity Datasets
(ABRIDGED) We present a new Schwarzschild orbit-superposition code designed
to model discrete datasets composed of velocities of individual kinematic
tracers in a dynamical system. This constitutes an extension of previous
implementations that can only address continuous data in the form of (the
moments of) velocity distributions, thus avoiding potentially important losses
of information due to data binning. Furthermore, the code can handle any
combination of available velocity components, i.e., only line-of-sight
velocities, only proper motions, or a combination of both. It can also handle a
combination of discrete and continuous data. The code finds the distribution
function (DF, a function of the three integrals of motion E, Lz, and I3) that
best reproduces the available kinematic and photometric observations in a given
axisymmetric gravitational potential. The fully numerical approach ensures
considerable freedom on the form of the DF f(E,Lz,I3). This allows a very
general modeling of the orbital structure, thus avoiding restrictive
assumptions about the degree of (an)isotropy of the orbits. We describe the
implementation of the discrete code and present a series of tests of its
performance based on the modeling of simulated datasets generated from a known
DF. We find that the discrete Schwarzschild code recovers the original orbital
structure, M/L ratios, and inclination of the input datasets to satisfactory
accuracy, as quantified by various statistics. The code will be valuable, e.g.,
for modeling stellar motions in Galactic globular clusters, and those of
individual stars, planetary nebulae, or globular clusters in nearby galaxies.
This can shed new light on the total mass distributions of these systems, with
central black holes and dark matter halos being of particular interest.Comment: ApJ, in press; 51 pages, 11 figures; manuscript revised following
comments by refere
Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects
The contribution of electrochemical methods
to the knowledge of dynamic speciation of toxic trace elements in marine waters is critically reviewed. Due to the importance
of dynamic considerations in the interpretation of the electrochemical signal, the principles and recent developments of kinetic features in the interconversion of metal complex species will be presented. As dynamic electrochemical
methods, only stripping techniques (anodic stripping voltammetry and stripping chronopotentiometry) will be used because they are the most important for the
determination of trace elements. Competitive ligand ex- change-adsorptive cathodic stripping voltammetry, which should be considered an equilibrium technique rather than a dynamic method, will be also discussed because the complexing parameters may be affected by some kinetic limitations if equilibrium before analysis is not attained and/or the flux of the adsorbed complex is in fluenced by the lability of the natural complexes in the water sample. For a correct data interpretation and system characterization the comparison of results obtained from different techniques seems essential in the articulation of a serious discussion of their meaning
Long-Ranged Orientational Order in Dipolar Fluids
Recently Groh and Dietrich claimed the thermodynamic state of a dipolar fluid
depends on the shape of the fluid's container. For example, a homogeneous fluid
in a short fat container would phase separate when transferred to a tall skinny
container of identical volume and temperature. Their calculation thus lacks a
thermodynamic limit. We show that removal of demagnetizing fields restores the
true, shape independent, thermodynamic limit. As a consequence, spontaneously
magnetized liquids display inhomogeneous magnetization textures.Comment: 3 pages, LaTex, no figures. Submitted as comment to PRL, May 199
On the Coulomb-dipole transition in mesoscopic classical and quantum electron-hole bilayers
We study the Coulomb-to-dipole transition which occurs when the separation
of an electron-hole bilayer system is varied with respect to the
characteristic in-layer distances. An analysis of the classical ground state
configurations for harmonically confined clusters with reveals that
the energetically most favorable state can differ from that of two-dimensional
pure dipole or Coulomb systems. Performing a normal mode analysis for the N=19
cluster it is found that the lowest mode frequencies exhibit drastic changes
when is varied. Furthermore, we present quantum-mechanical ground states
for N=6, 10 and 12 spin-polarized electrons and holes. We compute the
single-particle energies and orbitals in self-consistent Hartree-Fock
approximation over a broad range of layer separations and coupling strengths
between the limits of the ideal Fermi gas and the Wigner crystal
Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System.
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy
A Hubble Space Telescope ACS Search for Brown Dwarf Binaries in the Pleiades Open Cluster
We present the results of a high-resolution imaging survey for brown dwarf
binaries in the Pleiades open cluster. The observations were carried out with
the Advance Camera for Surveys onboard the Hubble Space Telescope. Our sample
consists of 15 bona-fide brown dwarfs. We confirm 2 binaries and detect their
orbital motion, but we did not resolve any new binary candidates in the
separation range between 5.4AU and 1700AU and masses in the range
0.035--0.065~Msun. Together with the results of our previous study (Martin et
al., 2003), we can derive a visual binary frequency of 13.3\%
for separations greater than 7~AU masses between 0.055--0.065~M_{\sun} and
mass ratios between 0.45--0.91.0. The other observed properties of
Pleiades brown dwarf binaries (distributions of separation and mass ratio)
appear to be similar to their older counterparts in the field.Comment: 29 pages, 7 figures, 6 tables, accepted for publication in Ap
Correlated errors in Hipparcos parallaxes towards the Pleiades and the Hyades
We show that the errors in the Hipparcos parallaxes towards the Pleiades and
the Hyades open clusters are spatially correlated over angular scales of 2 to 3
deg, with an amplitude of up to 2 mas. This correlation is stronger than
expected based on the analysis of the Hipparcos catalog. We predict the
parallaxes of individual cluster members, pi_pm, from their Hipparcos proper
motions, assuming that all cluster members have the same space velocity. We
compare pi_pm with their Hipparcos parallaxes, pi_Hip, and find that there are
significant spatial correlations in pi_Hip. We derive a distance modulus to the
Pleiades of 5.58 +- 0.18 mag using the radial-velocity gradient method. This
value, agrees very well with the distance modulus of 5.60 +- 0.04 mag
determined using the main-sequence fitting technique, compared with the value
of 5.33 +- 0.06 inferred from the average of the Hipparcos parallaxes of the
Pleiades members. We show that the difference between the main-sequence fitting
distance and the Hipparcos parallax distance can arise from spatially
correlated errors in the Hipparcos parallaxes of individual Pleiades members.
Although the Hipparcos parallax errors towards the Hyades are spatially
correlated in a manner similar to those of the Pleiades, the center of the
Hyades is located on a node of this spatial structure. Therefore, the parallax
errors cancel out when the average distance is estimated, leading to a mean
Hyades distance modulus that agrees with the pre-Hipparcos value. We speculate
that these spatial correlations are also responsible for the discrepant
distances that are inferred using the mean Hipparcos parallaxes to some open
clusters. Finally, we note that our conclusions are based on a purely geometric
method and do not rely on any models of stellar isochrones.Comment: 33 pages including 10 Figures, revised version accepted for
publication in Ap
Spin Stiffness in the Hubbard model
The spin stiffness of the repulsive Hubbard model that occurs
in the hydrodynamic theory of antiferromagnetic spin waves is shown to be the
same as the thermodynamically defined stiffness involved in twisting the order
parameter. New expressions for are derived, which enable easier
interpretation, and connections with superconducting weight and gauge
invariance are discussed.Comment: 21 Pages LaTeX2e, to be published in Journal of Physics
- …
