9,466 research outputs found

    Free energies in the presence of electric and magnetic fields

    Full text link
    We discuss different free energies for materials in static electric and magnetic fields. We explain what the corresponding Hamiltonians are, and describe which choice gives rise to which result for the free energy change, dF, in the thermodynamic identity. We also discuss which Hamiltonian is the most appropriate for calculations using statistical mechanics, as well as the relationship between the various free energies and the "Landau function", which has to be minimized to determine the equilibrium polarization or magnetization, and is central to Landau's theory of second order phase transitions

    Atom lithography without laser cooling

    Get PDF
    Using direct-write atom lithography, Fe nanolines are deposited with a pitch of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to 6 nm. These values are achieved by relying on geometrical collimation of the atomic beam, thus without using laser collimation techniques. This opens the way for applying direct-write atom lithography to a wide variety of elements.Comment: 7 pages, 11 figure

    Constraining the Mass Profiles of Stellar Systems: Schwarzschild Modeling of Discrete Velocity Datasets

    Full text link
    (ABRIDGED) We present a new Schwarzschild orbit-superposition code designed to model discrete datasets composed of velocities of individual kinematic tracers in a dynamical system. This constitutes an extension of previous implementations that can only address continuous data in the form of (the moments of) velocity distributions, thus avoiding potentially important losses of information due to data binning. Furthermore, the code can handle any combination of available velocity components, i.e., only line-of-sight velocities, only proper motions, or a combination of both. It can also handle a combination of discrete and continuous data. The code finds the distribution function (DF, a function of the three integrals of motion E, Lz, and I3) that best reproduces the available kinematic and photometric observations in a given axisymmetric gravitational potential. The fully numerical approach ensures considerable freedom on the form of the DF f(E,Lz,I3). This allows a very general modeling of the orbital structure, thus avoiding restrictive assumptions about the degree of (an)isotropy of the orbits. We describe the implementation of the discrete code and present a series of tests of its performance based on the modeling of simulated datasets generated from a known DF. We find that the discrete Schwarzschild code recovers the original orbital structure, M/L ratios, and inclination of the input datasets to satisfactory accuracy, as quantified by various statistics. The code will be valuable, e.g., for modeling stellar motions in Galactic globular clusters, and those of individual stars, planetary nebulae, or globular clusters in nearby galaxies. This can shed new light on the total mass distributions of these systems, with central black holes and dark matter halos being of particular interest.Comment: ApJ, in press; 51 pages, 11 figures; manuscript revised following comments by refere

    Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects

    Get PDF
    The contribution of electrochemical methods to the knowledge of dynamic speciation of toxic trace elements in marine waters is critically reviewed. Due to the importance of dynamic considerations in the interpretation of the electrochemical signal, the principles and recent developments of kinetic features in the interconversion of metal complex species will be presented. As dynamic electrochemical methods, only stripping techniques (anodic stripping voltammetry and stripping chronopotentiometry) will be used because they are the most important for the determination of trace elements. Competitive ligand ex- change-adsorptive cathodic stripping voltammetry, which should be considered an equilibrium technique rather than a dynamic method, will be also discussed because the complexing parameters may be affected by some kinetic limitations if equilibrium before analysis is not attained and/or the flux of the adsorbed complex is in fluenced by the lability of the natural complexes in the water sample. For a correct data interpretation and system characterization the comparison of results obtained from different techniques seems essential in the articulation of a serious discussion of their meaning

    Long-Ranged Orientational Order in Dipolar Fluids

    Full text link
    Recently Groh and Dietrich claimed the thermodynamic state of a dipolar fluid depends on the shape of the fluid's container. For example, a homogeneous fluid in a short fat container would phase separate when transferred to a tall skinny container of identical volume and temperature. Their calculation thus lacks a thermodynamic limit. We show that removal of demagnetizing fields restores the true, shape independent, thermodynamic limit. As a consequence, spontaneously magnetized liquids display inhomogeneous magnetization textures.Comment: 3 pages, LaTex, no figures. Submitted as comment to PRL, May 199

    On the Coulomb-dipole transition in mesoscopic classical and quantum electron-hole bilayers

    Full text link
    We study the Coulomb-to-dipole transition which occurs when the separation dd of an electron-hole bilayer system is varied with respect to the characteristic in-layer distances. An analysis of the classical ground state configurations for harmonically confined clusters with N30N\leq30 reveals that the energetically most favorable state can differ from that of two-dimensional pure dipole or Coulomb systems. Performing a normal mode analysis for the N=19 cluster it is found that the lowest mode frequencies exhibit drastic changes when dd is varied. Furthermore, we present quantum-mechanical ground states for N=6, 10 and 12 spin-polarized electrons and holes. We compute the single-particle energies and orbitals in self-consistent Hartree-Fock approximation over a broad range of layer separations and coupling strengths between the limits of the ideal Fermi gas and the Wigner crystal

    Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System.

    Get PDF
    Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy

    A Hubble Space Telescope ACS Search for Brown Dwarf Binaries in the Pleiades Open Cluster

    Get PDF
    We present the results of a high-resolution imaging survey for brown dwarf binaries in the Pleiades open cluster. The observations were carried out with the Advance Camera for Surveys onboard the Hubble Space Telescope. Our sample consists of 15 bona-fide brown dwarfs. We confirm 2 binaries and detect their orbital motion, but we did not resolve any new binary candidates in the separation range between 5.4AU and 1700AU and masses in the range 0.035--0.065~Msun. Together with the results of our previous study (Martin et al., 2003), we can derive a visual binary frequency of 13.34.3+13.7^{+13.7}_{-4.3}\% for separations greater than 7~AU masses between 0.055--0.065~M_{\sun} and mass ratios between 0.45--0.9<q<<q<1.0. The other observed properties of Pleiades brown dwarf binaries (distributions of separation and mass ratio) appear to be similar to their older counterparts in the field.Comment: 29 pages, 7 figures, 6 tables, accepted for publication in Ap

    Correlated errors in Hipparcos parallaxes towards the Pleiades and the Hyades

    Get PDF
    We show that the errors in the Hipparcos parallaxes towards the Pleiades and the Hyades open clusters are spatially correlated over angular scales of 2 to 3 deg, with an amplitude of up to 2 mas. This correlation is stronger than expected based on the analysis of the Hipparcos catalog. We predict the parallaxes of individual cluster members, pi_pm, from their Hipparcos proper motions, assuming that all cluster members have the same space velocity. We compare pi_pm with their Hipparcos parallaxes, pi_Hip, and find that there are significant spatial correlations in pi_Hip. We derive a distance modulus to the Pleiades of 5.58 +- 0.18 mag using the radial-velocity gradient method. This value, agrees very well with the distance modulus of 5.60 +- 0.04 mag determined using the main-sequence fitting technique, compared with the value of 5.33 +- 0.06 inferred from the average of the Hipparcos parallaxes of the Pleiades members. We show that the difference between the main-sequence fitting distance and the Hipparcos parallax distance can arise from spatially correlated errors in the Hipparcos parallaxes of individual Pleiades members. Although the Hipparcos parallax errors towards the Hyades are spatially correlated in a manner similar to those of the Pleiades, the center of the Hyades is located on a node of this spatial structure. Therefore, the parallax errors cancel out when the average distance is estimated, leading to a mean Hyades distance modulus that agrees with the pre-Hipparcos value. We speculate that these spatial correlations are also responsible for the discrepant distances that are inferred using the mean Hipparcos parallaxes to some open clusters. Finally, we note that our conclusions are based on a purely geometric method and do not rely on any models of stellar isochrones.Comment: 33 pages including 10 Figures, revised version accepted for publication in Ap

    Spin Stiffness in the Hubbard model

    Full text link
    The spin stiffness ρs\rho_{\rm s} of the repulsive Hubbard model that occurs in the hydrodynamic theory of antiferromagnetic spin waves is shown to be the same as the thermodynamically defined stiffness involved in twisting the order parameter. New expressions for ρs\rho_{\rm s} are derived, which enable easier interpretation, and connections with superconducting weight and gauge invariance are discussed.Comment: 21 Pages LaTeX2e, to be published in Journal of Physics
    corecore