3,582 research outputs found
Recommended from our members
Why do the maximum intensities in modeled tropical cyclones vary under the same environmental conditions?
In this study w e explored why the different initial tropical cyclone structures can result in different steady‐state maximum intensities in model simulations with the same environmental conditions. We discovered a linear relationsh ip between the radius of maximum wind (rm) and the absolute angular momentum that passes through rm (Mm) in the model simulated steady‐state tropical cyclones that rm = aMm+b. This nonnegligible intercept b is found to be the key to making a steady‐state storm with a larger Mm more intense. The sensitivity experiments show that this nonzero b results mainly from horizontal turbulent mixing and decreases with decreased horizontal mixing. Using this linear relationship from the simulations, it is also found that the degree of supergradient wind is a function of Mm as well as the turbulent mixing length such that both a larger Mm and/or a reduced turbulent mixing length result in larger supergradient winds
Parameterized Complexity Dichotomy for Steiner Multicut
The Steiner Multicut problem asks, given an undirected graph G, terminals
sets T1,...,Tt V(G) of size at most p, and an integer k, whether
there is a set S of at most k edges or nodes s.t. of each set Ti at least one
pair of terminals is in different connected components of G \ S. This problem
generalizes several graph cut problems, in particular the Multicut problem (the
case p = 2), which is fixed-parameter tractable for the parameter k [Marx and
Razgon, Bousquet et al., STOC 2011].
We provide a dichotomy of the parameterized complexity of Steiner Multicut.
That is, for any combination of k, t, p, and the treewidth tw(G) as constant,
parameter, or unbounded, and for all versions of the problem (edge deletion and
node deletion with and without deletable terminals), we prove either that the
problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or
even (para-)NP-complete). We highlight that:
- The edge deletion version of Steiner Multicut is fixed-parameter tractable
for the parameter k+t on general graphs (but has no polynomial kernel, even on
trees). We present two proofs: one using the randomized contractions technique
of Chitnis et al, and one relying on new structural lemmas that decompose the
Steiner cut into important separators and minimal s-t cuts.
- In contrast, both node deletion versions of Steiner Multicut are W[1]-hard
for the parameter k+t on general graphs.
- All versions of Steiner Multicut are W[1]-hard for the parameter k, even
when p=3 and the graph is a tree plus one node. Hence, the results of Marx and
Razgon, and Bousquet et al. do not generalize to Steiner Multicut.
Since we allow k, t, p, and tw(G) to be any constants, our characterization
includes a dichotomy for Steiner Multicut on trees (for tw(G) = 1), and a
polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to
constant or unbounded).Comment: As submitted to journal. This version also adds a proof of
fixed-parameter tractability for parameter k+t using the technique of
randomized contraction
Recommended from our members
Time-correlated model error in the (ensemble) Kalman smoother
Data assimilation is often performed in a perfect-model scenario, where only errors in initial conditions and observations are considered. Errors in model equations are increasingly being included, but typically using rather ad-hoc approximations with limited understanding of how these approximations affect the solution and how these approximations interfere with approximations inherent in finite-size ensembles.
We provide the first systematic evaluation of the influence of approximations to model errors within a time window of weak-constraint ensemble smoothers. In particular, we study the effects of prescribing temporal correlations in the model errors incorrectly in a Kalman Smoother, and in interaction with finite ensemble-size effects in an Ensemble Kalman Smoother.
For the Kalman Smoother we find that an incorrect correlation time scale for additive model errors can have substantial negative effects on the solutions, and we find that overestimating of the correlation time scale leads to worse results than underestimating. In the Ensemble Kalman Smoother case, the resulting ensemble-based space-time gain can be written as the true gain multiplied by two factors, a linear factor containing the errors due to both time-correlation errors and finite ensemble effects, and a non-linear factor related to the inverse part of the gain. Assuming that both errors are relatively small, we are able to disentangle the contributions from the different approximations. The analysis mean is affected by the time-correlation errors, but also substantially by finite ensemble effects, which was unexpected. The analysis covariance is affected by both time-correlation errors and an in-breeding term.
This first thorough analysis of the influence of time-correlation errors and finite ensemble size errors on weak-constraint ensemble smoothers will aid further development of these methods and help to make them robust for e.g. numerical weather prediction
Recommended from our members
Sequential Monte Carlo with kernel embedded mappings: the mapping particle filter
In this work, a novel sequential Monte Carlo filter is introduced which aims at an efficient sampling of the state space. Particles are pushed forward from the prediction to the posterior density using a sequence of mappings that minimizes the Kullback-Leibler divergence between the posterior and the sequence of intermediate densities. The sequence of mappings represents a gradient flow based on the principles of local optimal transport. A key ingredient of the mappings is that they are embedded in a reproducing kernel Hilbert space, which allows for a practical and efficient Monte Carlo algorithm. The kernel embedding provides a direct means to calculate the gradient of the Kullback-Leibler divergence leading to quick convergence using well-known gradient-based stochastic optimization algorithms. Evaluation of the method is conducted in the chaotic Lorenz-63 system, the Lorenz-96 system, which is a coarse prototype of atmospheric dynamics, and an epidemic model that describes cholera dynamics. No resampling is required in the mapping particle filter even for long recursive sequences. The number of effective particles remains close to the total number of particles in all the sequence. Hence, the mapping particle filter does not suffer from sample impoverishment
Recommended from our members
Efficient fully nonlinear data assimilation for geophysical fluid dynamics
A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method
Polynomial Kernels for Deletion to Classes of Acyclic Digraphs
We consider the problem to find a set X of vertices (or arcs) with |X| <= k in a given digraph G such that D = G-X is an acyclic digraph. In its generality, this is DIRECTED FEEDBACK VERTEX SET or DIRECTED FEEDBACK ARC SET respectively. The existence of a polynomial kernel for these problems is a notorious open problem in the field of kernelization, and little progress has been made.
In this paper, we consider both deletion problems with an additional restriction on D, namely that D must be an out-forest, an out-tree, or a (directed) pumpkin. Our main results show that for each of these three restrictions the vertex deletion problem remains NP-hard, but we can obtain a kernel with k^{O(1)} vertices on general digraphs G. We also show that, in contrast to the vertex deletion problem, the arc deletion problem with each of the above restrictions can be solved in polynomial time
Recommended from our members
Observation impact in data assimilation: the effect of non-Gaussian observation error.
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure
Massively parallel implicit equal-weights particle filter for ocean drift trajectory forecasting
Forecasting of ocean drift trajectories are important for many applications, including search and rescue operations, oil spill cleanup and iceberg risk mitigation. In an operational setting, forecasts of drift trajectories are produced based on computationally demanding forecasts of three-dimensional ocean currents. Herein, we investigate a complementary approach for shorter time scales by using the recently proposed two-stage implicit equal-weights particle filter applied to a simplified ocean model. To achieve this, we present a new algorithmic design for a data-assimilation system in which all components – including the model, model errors, and particle filter – take advantage of massively parallel compute architectures, such as graphical processing units. Faster computations can enable in-situ and ad-hoc model runs for emergency management, and larger ensembles for better uncertainty quantification. Using a challenging test case with near-realistic chaotic instabilities, we run data-assimilation experiments based on synthetic observations from drifting and moored buoys, and analyze the trajectory forecasts for the drifters. Our results show that even sparse drifter observations are sufficient to significantly improve short-term drift forecasts up to twelve hours. With equidistant moored buoys observing only 0.1% of the state space, the ensemble gives an accurate description of the true state after data assimilation followed by a high-quality probabilistic forecast
- …
